NeuroImage
-
Brain functional states are established by functional connectivities between brain regions. In experienced meditators (13 Tibetan Buddhists, 15 QiGong, 14 Sahaja Yoga, 14 Ananda Marga Yoga, 15 Zen), 19-channel EEG was recorded before, during and after that meditation exercise which their respective tradition regards as route to the most desirable meditative state. The head surface EEG data were recomputed (sLORETA) into 19 cortical regional source model time series. ⋯ The topography of the functional connectivities was examined via PCA-based computation of principal connectivities. When going into and out of meditation, significantly different connectivities revealed clearly different topographies in the delta frequency band and minor differences in the beta-2 band. The globally reduced functional interdependence between brain regions in meditation suggests that interaction between the self process functions is minimized, and that constraints on the self process by other processes are minimized, thereby leading to the subjective experience of non-involvement, detachment and letting go, as well as of all-oneness and dissolution of ego borders during meditation.
-
The stimulant drug methylphenidate (MPH) and the non-stimulant drug atomoxetine (ATX) are both widely used for the treatment of attention deficit/hyperactivity disorder (ADHD), but their differential effects on human brain function are poorly understood. PET and blood oxygen level dependent (BOLD) fMRI have been used to study the effects of MPH and BOLD fMRI is beginning to be used to delineate the effects of MPH and ATX in the context of cognitive tasks. The BOLD signal is a proxy for neuronal activity and is dependent on three physiological parameters: regional cerebral blood flow (rCBF), cerebral metabolic rate of oxygen and cerebral blood volume. ⋯ We showed common and differential effects in cortical and subcortical brain regions. The clearest differential effects were observed in four regions: (i) in the caudate body where MPH but not ATX increased rCBF, (ii) in the midbrain/substantia nigra and (iii) thalamus where MPH increased and ATX decreased rCBF plus (iv) a large region of cerebellar cortex where ATX increased rCBF relative to MPH. Our results demonstrate that combining ASL and PR yields a sensitive method for detecting the effects of these drugs and provides insights into the regional distribution of brain networks potentially modulated by these compounds.
-
Whilst MRI is routinely used for the assessment and diagnosis of multiple sclerosis, there is poor correspondence between clinical disability in primary progressive multiple sclerosis (PPMS) patients and conventional MRI markers of disease activity (e.g., number of enhancing lesions). As PPMS patients show diffuse and global myelin loss, the aim of this study was to evaluate the efficacy of whole-brain myelin water fraction (MWF) imaging in PPMS. Specifically, we sought to use full-brain analysis techniques to: 1) determine the reproducibility of MWF estimates in PPMS brain; 2) compare MWF values in PPMS brain to healthy controls; and 3) establish the relationship between MWF and clinical disability, regionally and globally throughout the brain. ⋯ A significant correlation was found between the volume of significantly reduced MWF and clinical disability (p=0.008, R=0.58). Our results show that clinical disability is reflected in particular regions of cerebral white matter that are consistent between subjects, and illustrates a method to examine tissue alteration throughout the brain of individual patients. These results strongly support the use of MWF imaging to evaluate disease activity in PPMS.
-
Several brain structures have been consistently found to be involved in visceral pain processing. However, recent research questions the specificity of these regions and it has been suggested that it is not singular activations of brain areas, but their cross-communication that results in perception of pain. Moreover, frequency at which neurons are firing could be what separates pain from other sensory modalities which otherwise involve the same anatomical locations. In this test/retest study, we identified the network of sources and their frequencies following visceral pain. ⋯ This study gives evidence of operculum's central integrative role for perception of pain and shows that MMP is a reliable method to study upstream brain activity.
-
The role of operculo-insular region in the processing of somato-sensory inputs, painful or not, is now well established. However, available maps from previous literature show a substantial overlap of cortical areas activated by these stimuli, and the region referred to as the "secondary somatosensory area (SII)" is widely distributed in the parietal operculum. Differentiating SII from posterior insula cortex, which is anatomically contiguous, is not easy, explaining why the "operculo-insular" label has been introduced to describe activations by somatosensory stimuli in this cortical region. ⋯ Pain stimuli induced the most widespread and intense activation that was bilateral in SII (OP1, OP4) and distributed to all sub-regions of contralateral insula (except OP2) and to the anterior part of the ipsilateral insula (PreCG, MSG, ASG). However, the posterior granular part of insula contralateral to stimulus (Ig area) and the anterior part of SII bilaterally (OP4) were specifically activated during pain stimulation. This raises the question whether these latter areas could be the anatomical substrate of the sensory-discriminative processing of thermal pain.