NeuroImage
-
The human insula is hidden in the depth of the cerebral hemisphere by the overlying frontal and temporal opercula, and consists of three cytoarchitectonically distinct regions: the anterior agranular area, posterior granular area, and the transitional dysgranular zone; each has distinct histochemical staining patterns and specific connectivity. Even though there are several studies reporting the functional connectivity of the insula with the cingulated cortex, its relationships with other brain areas remain elusive in humans. Therefore, we decided to use resting state functional connectivity to elucidate in details its connectivity, in terms of cortical and subcortical areas, and also of lateralization. ⋯ The clear bipartition of the insula was confirmed by negative correlation analysis. Correlation maps are partially lateralized: the salience network, related to the ventral anterior insula, displays stronger connections with the anterior cingulate cortex on the right side, and with the frontal cortex on the left side; the posterior network has stronger connections with the superior temporal cortex and the occipital cortex on the right side. These results are in agreement with connectivity studies in primates, and support the use of resting state functional analysis to investigate connectivity in the living human brain.
-
The Default Mode Network (DMN) is a higher order functional neural network that displays activation during passive rest and deactivation during many types of cognitive tasks. Accordingly, the DMN is viewed to represent the neural correlate of internally-generated self-referential cognition. This hypothesis implies that the DMN requires the involvement of cognitive processes, like declarative memory. ⋯ Our findings show less deactivation during semantic compared to the two non-semantic tasks for the entire DMN unit and within left-hemispheric DMN regions, i.e., the dorsal medial prefrontal cortex, the anterior cingulate cortex, the retrosplenial cortex, the angular gyrus, the middle temporal gyrus and the anterior temporal region, as well as the right cerebellum. These results demonstrate that well-known semantic regions are spatially and functionally involved in the DMN. The present study further supports the hypothesis of the DMN as an internal mentation system that involves declarative memory functions.
-
Surgery is often the only effective treatment for intractable epilepsy, but its benefits must be balanced by potential disruption of eloquent cortical functions. Wada test is the standard technique to lateralize language before surgery; however, it is invasive and associated with complications. fMRI provides an attractive noninvasive alternative, which has been previously shown to correlate with Wada results. However this correlation is imperfect since standard fMRI laterality indices are dependent on a particular arbitrary statistical threshold used in the data processing. ⋯ The lateralization scores correlated well with the objective measures of language lateralization (r(2)=0.46). Cumulative historical data were utilized to prospectively determine probabilities of language lateralization for individual patients. In conclusion, hemispheric language lateralization can be accurately determined using a novel objective and automated methodology that calculates language lateralization in a threshold-independent manner and can be used to determine the probability of language dominance in individual patients.
-
Children born very preterm, even when intelligence is broadly normal, often experience selective difficulties in executive function and visual-spatial processing. Development of structural cortical connectivity is known to be altered in this group, and functional magnetic resonance imaging (fMRI) evidence indicates that very preterm children recruit different patterns of functional connectivity between cortical regions during cognition. ⋯ Very preterm children exhibited reduced long-range synchronization in the alpha-band during visual short-term memory retention, indicating that cortical alpha rhythms may play a critical role in altered patterns functional connectivity expressed by this population during cognitive and perceptual processing. Long-range alpha-band synchronization was also correlated with task performance and visual-perceptual ability within the very preterm group, indicating that altered alpha oscillatory mechanisms mediating transient functional integration between cortical regions may be relevant to selective problems in neurocognitive development in this vulnerable population at school age.
-
Review Meta Analysis
Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain.
A growing body of evidence suggests that empathy for pain is underpinned by neural structures that are also involved in the direct experience of pain. In order to assess the consistency of this finding, an image-based meta-analysis of nine independent functional magnetic resonance imaging (fMRI) investigations and a coordinate-based meta-analysis of 32 studies that had investigated empathy for pain using fMRI were conducted. The results indicate that a core network consisting of bilateral anterior insular cortex and medial/anterior cingulate cortex is associated with empathy for pain. ⋯ Moreover, the image-based analysis demonstrates that depending on the type of experimental paradigm this core network was co-activated with distinct brain regions: While viewing pictures of body parts in painful situations recruited areas underpinning action understanding (inferior parietal/ventral premotor cortices) to a stronger extent, eliciting empathy by means of abstract visual information about the other's affective state more strongly engaged areas associated with inferring and representing mental states of self and other (precuneus, ventral medial prefrontal cortex, superior temporal cortex, and temporo-parietal junction). In addition, only the picture-based paradigms activated somatosensory areas, indicating that previous discrepancies concerning somatosensory activity during empathy for pain might have resulted from differences in experimental paradigms. We conclude that social neuroscience paradigms provide reliable and accurate insights into complex social phenomena such as empathy and that meta-analyses of previous studies are a valuable tool in this endeavor.