NeuroImage
-
Due to its crucial role for memory processes and its relevance in neurological and psychiatric disorders, the hippocampus has been the focus of neuroimaging research for several decades. In vivo measurement of human hippocampal volume and shape with magnetic resonance imaging has become an important element of neuroimaging research. Nevertheless, volumetric findings are still inconsistent and controversial for many psychiatric conditions including affective disorders. ⋯ These are major sources of variance between different protocols. In contrast, the definitions of the lateral, superior, and inferior borders are less disputed. Directing resources to replication studies that incorporate characteristics of the segmentation protocols presented herein may help resolve seemingly contradictory volumetric results between prior neuroimaging studies and facilitate the appropriate selection of protocols for manual or automated delineation of the hippocampus for future research purposes.
-
We describe a new method to automatically discriminate between patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI) and elderly controls, based on multidimensional classification of hippocampal shape features. This approach uses spherical harmonics (SPHARM) coefficients to model the shape of the hippocampi, which are segmented from magnetic resonance images (MRI) using a fully automatic method that we previously developed. SPHARM coefficients are used as features in a classification procedure based on support vector machines (SVM). ⋯ For MCI vs controls, we obtain a classification rate of 83%, a sensitivity of 83%, and a specificity of 84%. This accuracy is superior to that of hippocampal volumetry and is comparable to recently published SVM-based whole-brain classification methods, which relied on a different strategy. This new method may become a useful tool to assist in the diagnosis of Alzheimer's disease.
-
Previous studies have reported that the spontaneous, resting-state time course of the default-mode network is negatively correlated with that of the "task-positive network", a collection of regions commonly recruited in demanding cognitive tasks. However, all studies of negative correlations between the default-mode and task-positive networks have employed some form of normalization or regression of the whole-brain average signal ("global signal"); these processing steps alter the time series of voxels in an uninterpretable manner as well as introduce spurious negative correlations. Thus, the extent of negative correlations with the default mode network without global signal removal has not been well characterized, and it is has recently been hypothesized that the apparent negative correlations in many of the task-positive regions could be artifactually induced by global signal pre-processing. ⋯ Physiological noise correction increased the spatial extent and magnitude of negative correlations, yielding negative correlations within task-positive regions at the group-level (p<0.05, uncorrected; no regions at the group level were significant at FDR=0.05). Furthermore, physiological noise correction caused region-specific decreases in positive correlations within the default-mode network, reducing apparent false positives. It was observed that the low-frequency respiratory volume and cardiac rate regressors used within the physiological noise correction algorithm displayed significant (but not total) shared variance with the global signal, and constitute a model-based alternative to correcting for non-neural global noise.
-
Resting-state data sets contain coherent fluctuations unrelated to neural processes originating from residual motion artefacts, respiration and cardiac action. Such confounding effects may introduce correlations and cause an overestimation of functional connectivity strengths. In this study we applied several multidimensional linear regression approaches to remove artificial coherencies and examined the impact of preprocessing on sensitivity and specificity of functional connectivity results in simulated data and resting-state data sets from 40 subjects. ⋯ Results in simulated data sets compared with result of human data strongly suggest that anticorrelations are indeed introduced by global signal regression and should therefore be interpreted very carefully. In addition, global signal regression may also reduce the sensitivity for detecting true correlations, i.e. increase the number of false negatives. Concluding from our results we suggest that is highly recommended to apply correction against realignment parameters, white matter and ventricular time courses, as well as the global signal to maximize the specificity of positive resting-state correlations.
-
Randomized Controlled Trial
Traditional Chinese acupuncture and placebo (sham) acupuncture are differentiated by their effects on mu-opioid receptors (MORs).
Controversy remains regarding the mechanisms of acupuncture analgesia. A prevailing theory, largely unproven in humans, is that it involves the activation of endogenous opioid antinociceptive systems and mu-opioid receptors (MORs). This is also a neurotransmitter system that mediates the effects of placebo-induced analgesia. ⋯ These short- and long-term effects were absent in the sham group where small reductions were observed, an effect more consistent with previous placebo PET studies. Long-term increases in MOR BP following TA were also associated with greater reductions in clinical pain. These findings suggest that divergent MOR processes may mediate clinically relevant analgesic effects for acupuncture and sham acupuncture.