NeuroImage
-
Magnetic resonance parameters, such as longitudinal (T1) and transverse (T2) relaxation times and proton density (PD) provide intrinsic information about the human brain. In vivo quantification of these parameters may enable detection of subtle regional grey matter (GM) or white matter (WM) differences and permit neurological disease detection and monitoring. The aims of the study were to quantify T1, T2 and PD values in all cortical gray matter regions for a group of healthy volunteers scanned at 1.5 T and to cluster regions showing statistically distinguishable tissue characteristics. ⋯ Correspondence analysis (CA) and hierarchical clustering (HC) were combined and applied to averaged T1, T2 and PD values within each VOI in order to identify groups of anatomical structures that are related statistically. Interestingly, except for one structure, all VOIs were grouped with left-right symmetry and showed an interesting pattern: the four lobes (frontal, occipital, parietal and temporal) were roughly clustered and the precentral and postcentral gyri were merged together. Our study shows that CA and HC analysis of MRI relaxation parameters and proton density can be used for cortical clustering of atlas-defined cortical regions.
-
The neural underpinnings of major depressive disorder (MDD) are unknown but there is evidence for structural alteration in the hippocampus that may become more pronounced over the course of illness. The aim of the present study was to examine metabolite levels of N-acetyl-aspartate (NAA), Myo-inositol (MI), Glutamate-glutamine (Glx) and choline-containing compounds (GPC and GPC+PCh) in patients presenting for first treatment of a depressive episode compared to those with multiple past episodes and age and sex matched controls. ⋯ The group presenting for first treatment had only increases in MI levels compared with matched controls. These results suggest that abnormal membrane turnover in the hippocampus is greater in patients with highly recurrent illness, and provide support for the hypothesis that there are neuronal changes in this region over the course of illness.
-
Standard parallel magnetic resonance imaging (MRI) techniques suffer from residual aliasing artifacts when the coil sensitivities vary within the image voxel. In this work, a parallel MRI approach known as Superresolution SENSE (SURE-SENSE) is presented in which acceleration is performed by acquiring only the central region of k-space instead of increasing the sampling distance over the complete k-space matrix and reconstruction is explicitly based on intra-voxel coil sensitivity variation. In SURE-SENSE, parallel MRI reconstruction is formulated as a superresolution imaging problem where a collection of low resolution images acquired with multiple receiver coils are combined into a single image with higher spatial resolution using coil sensitivities acquired with high spatial resolution. ⋯ Unlike standard SENSE, for which acceleration is constrained to the phase-encoding dimension/s, SURE-SENSE allows acceleration along all encoding directions--for example, two-dimensional acceleration of a 2D echo-planar acquisition. SURE-SENSE is particularly suitable for low spatial resolution imaging modalities such as spectroscopic imaging and functional imaging with high temporal resolution. Application to echo-planar functional and spectroscopic imaging in human brain is presented using two-dimensional acceleration with a 32-channel receiver coil.
-
Primary dysmenorrhea (PDM, menstrual pain without pelvic abnormality) is the most common gynecological disorder for women in the reproductive age. It is characterized by cramping pain and enhanced pain sensitivity during the menstruation period. PDM has been associated with peripheral and central sensitization. ⋯ These results show that ongoing menstrual pain in PDM is accompanied by abnormal brain metabolism. Disinhibition of thalamo-orbitofrontal-prefrontal networks may contribute to the generation of pain and hyperalgesia in PDM possibly by maintaining spinal and thalamic sensitization while increasing negative affect. Excessive excitatory input during menstrual pain may induce compensatory inhibitory mechanism in several somatic sensorimotor regions.
-
DBS depends on precise placement of the stimulating electrode into an appropriate target region. Image-based (direct) targeting has been limited by the ability of current technology to visualize DBS targets. We have recently developed and employed a Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR) 3T MRI sequence to more reliably visualize these structures. ⋯ The FGATIR scans allowed for localization of the thalamus, striatum, GPe/GPi, RN, and SNr and displayed sharper delineation of these structures. The FGATIR also revealed features not visible on other scan types: the internal lamina of the GPi, fiber bundles from the internal capsule piercing the striatum, and the boundaries of the STN. We hope that use of the FGATIR to aid initial targeting will translate in future studies to faster and more accurate procedures with consequent improvements in clinical outcomes.