NeuroImage
-
Based on reciprocal connections between the dorsolateral prefrontal cortex (DLPFC) and basal-ganglia regions associated with sensorimotor cortical excitability, it was hypothesized that repetitive transcranial magnetic stimulation (rTMS) of the left DLPFC would modulate sensorimotor cortical excitability induced by muscle pain. Muscle pain was provoked by injections of nerve growth factor (end of Day-0 and Day-2) into the right extensor carpi radialis brevis (ECRB) muscle in two groups of 15 healthy participants receiving 5 daily sessions (Day-0 to Day-4) of active or sham rTMS. Muscle pain scores and pressure pain thresholds (PPTs) were collected (Day-0, Day-3, Day-5). ⋯ At Day-0 versus Day-5, the sham compared to active group showed: Higher muscle pain scores and reduced PPTs (P < 0.04); decreased frontal N30 SEP (P < 0.01); increased TMS map volume (P < 0.03). These results indicate that muscle pain exerts modulatory effects on the sensorimotor cortical excitability and left DLPFC rTMS has analgesic effects and modulates pain-induced sensorimotor cortical adaptations. These findings suggest an important role of prefrontal to basal-ganglia function in sensorimotor cortical excitability and pain processing.
-
Most studies of brain iron relied on the effect of the iron on magnetic resonance (MR) relaxation properties, such as R2∗, and bulk tissue magnetic susceptibility, as measured by quantitative susceptibility mapping (QSM). The present study exploited the dependence of R2∗ and magnetic susceptibility on physical interactions at different length-scales to retrieve information about the tissue microenvironment, rather than the iron concentration. ⋯ To validate this hypothesis, we analyzed the voxel-based association between R2∗ and magnetic susceptibility in different DGM regions of 26 patients with multiple sclerosis and 33 age- and sex-matched normal controls. Values of the IMC varied significantly between anatomical regions, were reduced in the dentate and increased in the caudate of patients compared to controls, and decreased with normal aging, most strongly in caudate, globus pallidus and putamen.
-
Personality is a central high-level psychological concept that defines individual human beings and has been associated with a variety of real-world outcomes (e.g., mental health and academic performance). Using 2 h, high resolution, functional magnetic resonance imaging (fMRI) resting state data of 984 (primary dataset N = 801, hold-out dataset N = 183) participants from the Human Connectome Project (HCP), we investigated the relationship between personality (five-factor model, FFM) and intrinsic whole-brain functional connectome. We found a pattern of functional brain connectivity ("global personality network") related to personality traits. ⋯ Across all the identified pairs of participants, we found a positive correlation between the network similarity and personality similarity, supporting our "similar brain, similar personality" hypothesis. Furthermore, the global personality network can be used to predict the individual subject's responses in the personality questionnaire on an item level. In sum, based on individual brain connectivity pattern, we could predict different facets of personality, and this prediction is not based on localized regions, but rather relies on the individual connectivity pattern in large-scale brain networks.
-
The lateral geniculate nucleus (LGN) is an essential nucleus of the visual pathway, occupying a small volume (60-160 mm3) among the other thalamic nuclei. The reported LGN volumes vary greatly across studies due to technical limitations and due to methodological differences of volume assessment. Yet, structural and anatomical alterations in ophthalmologic and neurodegenerative pathologies can only be revealed by a precise and reliable LGN representation. To improve LGN volume assessment, we first implemented a reference acquisition for LGN volume determination with optimized Contrast to Noise Ratio (CNR) and high spatial resolution. Next, we compared CNR efficiency and rating reliability of 3D Magnetization Prepared Rapid Gradient Echo (MPRAGE) images using white matter nulled (WMn) and grey matter nulled (GMn) sequences and its subtraction (WMn-GMn) relative to the clinical standard Proton Density Turbo Spin Echo (PD 2D TSE) and the reference acquisition. We hypothesized that 3D MPRAGE should provide a higher CNR and volume determination accuracy than the currently used 2D sequences. ⋯ WMn and GMn MPRAGE allow reliable LGN volume determination at both field strengths. The precise location and identification of the LGN (volume) can help to optimize neuroanatomical and neurophysiological studies, which involve the LGN structure. Our optimized imaging protocol may be used for clinical applications aiming at small nuclei volumetric and CNR quantification.
-
To infer the face-based mentalizing network from resting-state functional MRI (rsfMRI) using a seed-based correlation analysis with regions of interest identified during intraoperative cortical electrostimulation. ⋯ The present study successfully demonstrated the involvement of a large-scale neural network in the face-based mentalizing that strongly matches networks, classically identified using task-based fMRI paradigms. We thus validated the combination of rsfMRI and stimulation mapping as a powerful approach to identify functional networks in brain-damaged patients.