NeuroImage
-
Combined transcranial magnetic stimulation/electroencephalography (TMS/EEG) was used to study the activation and interaction of cortical regions to a variety of focused sub- and suprathreshold magnetic pulses over the left primary motor cortex (M1) in ten healthy subjects. Five single-pulse TMS conditions were performed based on the individual resting motor threshold (RMT): (1) 80%; (2) 100%; (3) 120%; (4) 130%; and (5) sham. Simple self-paced movements of the right first finger were also executed. ⋯ The single-pulse TMS over M1 partially modulated the motor cortex generators of oscillatory activity, while a simple active self-paced movement of the right first finger induced greater cortex activation and coupling between cortical regions. We propose that finger movements impose higher functional demands on the motor system compared to artificial magnetic stimulation. These findings are consistent with the possibility that the human motor system may be based on network-like oscillatory cortical activity and might be modulated by brief electromagnetic sub- and suprathreshold pulses applied to M1, suggesting a phenomenon of resetting.
-
Clinical Trial
Brain activation during execution and motor imagery of novel and skilled sequential hand movements.
This experiment used functional magnetic resonance imaging (fMRI) to compare functional neuroanatomy associated with executed and imagined hand movements in novel and skilled learning phases. We hypothesized that 1 week of intensive physical practice would strengthen the motor representation of a hand motor sequence and increase the similarity of functional neuroanatomy associated with executed and imagined hand movements. During fMRI scanning, a right-hand self-paced button press sequence was executed and imagined before (NOVEL) and after (SKILLED) 1 week of intensive physical practice (n = 54; right-hand dominant). ⋯ In the NOVEL phase, activations were more extensive during execution than imagery in primary and secondary cortical motor volumes and the cerebellum, while during imagery activations were greater in the striatum. In the SKILLED phase, activation features within these same volumes became increasingly similar for execution and imagery, though imagery more heavily activated premotor areas, inferior parietal lobe, and medial temporal lobe, while execution more heavily activated the precentral/postcentral gyri, striatum, and cerebellum. This experiment demonstrated congruent activation of the cortical and subcortical motor system during both novel and skilled learning phases, supporting the effectiveness of motor imagery-based mental practice techniques for both the acquisition of new skills and the rehearsal of skilled movements.
-
Clinical Trial
Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging.
Pain perception is a multidimensional phenomenon, derived from sensory, affective, cognitive-evaluative and homeostatic information. Neuroimaging studies of pain perception have investigated the role of primary somatosensory cortex (SI); however, they have typically failed to demonstrate the expected somatotopy. An alternative network for the sensory component of pain has been proposed, involving a temperature and pain-specific nucleus of the thalamus (VMpo) and its projections to dorsal posterior insula (dpIns). ⋯ Single subject analysis demonstrated that only coordinates for dpIns activation were significantly dependent on stimulus location (Hotelling's Trace, P = 0.012). Coordinates for face (paired t test, P = 0.004) and hand (P < 0.001) activity were more lateral than those for foot, whilst face activation was anterior to the foot (P = 0.037). Based on single subject analyses, the average standard space (MNI) coordinates for face, hand and foot activity were (-40,-16,11), (-40,-19,14) and (-35,-21,11) respectively.
-
The relationship between pain and cognitive function is of theoretical and clinical interest, exemplified by observations that attention-demanding activities reduce pain in chronically afflicted patients. Previous studies have concentrated on phasic pain, which bears little correspondence to clinical pain conditions. Indeed, phasic pain is often associated with differential or opposing effects to tonic pain in behavioral, lesion, and pharmacological studies. ⋯ This pain-related activity in medial prefrontal cortex and cerebellum was modulated by the demand level of the cognitive task. Our findings highlight a role for these structures in the integration of motivational and cognitive functions associated with a physiological state of injury. Within the limitations of an experimental model of pain, we suggest that the findings are relevant to understanding both the neurobiology and pathophysiology of chronic pain and its amelioration by cognitive strategies.
-
Psychological and neurophysiological models of visual processing have traditionally emphasized hierarchical models to explain how separate features of visual stimuli are combined. This concept has been challenged recently with the demonstration of simultaneous activation of multiple visual areas and rapid feedback to primary cortices. Here, we show human visual processing may involve similar mechanisms. ⋯ These enhanced early responses were followed by task-specific sustained posterior activity (300-500 ms). Faster reaction times were correlated with enhanced and faster early processing in the visual ventral areas. These data demonstrate the human visual system conjoins features rapidly, accelerating and amplifying the processing of relevant stimulus dimensions.