NeuroImage
-
This work presents an automatically annotated fiber cluster (AAFC) method to enable identification of anatomically meaningful white matter structures from the whole brain tractography. The proposed method consists of 1) a study-specific whole brain white matter parcellation using a well-established data-driven groupwise fiber clustering pipeline to segment tractography into multiple fiber clusters, and 2) a novel cluster annotation method to automatically assign an anatomical tract annotation to each fiber cluster by employing cortical parcellation information across multiple subjects. The novelty of the AAFC method is that it leverages group-wise information about the fiber clusters, including their fiber geometry and cortical terminations, to compute a tract anatomical label for each cluster in an automated fashion. ⋯ Experimental results indicate that our proposed method is more consistent in identifying the tracts across subjects and across hemispheres in terms of the number of fibers. In addition, we perform a between-group statistical analysis in 31 MDD patients and 62 healthy subjects on the identified tracts using our AAFC method. We find statistical differences in diffusion measures in local regions within a fiber tract (e.g. 4 fiber clusters within the identified left hemisphere cingulum bundle (consisting of 14 clusters) are significantly different between the two groups), suggesting the ability of our method in identifying potential abnormality specific to subdivisions of a white matter structure.
-
Multicenter Study
Probabilistic functional tractography of the human cortex revisited.
In patients with pharmaco-resistant focal epilepsies investigated with intracranial electroencephalography (iEEG), direct electrical stimulations of a cortical region induce cortico-cortical evoked potentials (CCEP) in distant cerebral cortex, which properties can be used to infer large scale brain connectivity. In 2013, we proposed a new probabilistic functional tractography methodology to study human brain connectivity. We have now been revisiting this method in the F-TRACT project (f-tract.eu) by developing a large multicenter CCEP database of several thousand stimulation runs performed in several hundred patients, and associated processing tools to create a probabilistic atlas of human cortico-cortical connections. ⋯ Finally, we describe the impact on the estimated connectivity of the stimulation charge and of the contact localization according to the white or gray matter. The most relevant maps for the scientific community are available for download on f-tract. eu (David et al., 2017) and will be regularly updated during the following months with the addition of more data in the F-TRACT database. This will provide an unprecedented knowledge on the dynamical properties of large fiber tracts in human.
-
Rhythmic neuronal synchronization across large-scale networks is thought to play a key role in the regulation of conscious states. Changes in neuronal oscillation amplitude across states of consciousness have been widely reported, but little is known about possible changes in the temporal dynamics of these oscillations. The temporal structure of brain oscillations may provide novel insights into the neural mechanisms underlying consciousness. ⋯ We found that periods of unconsciousness were associated with increases in LRTC in beta (15-30Hz) amplitude over frontocentral channels and with a suppression of alpha (8-13Hz) amplitude over occipitoparietal electrodes. Moreover, classifiers trained to predict states of consciousness on single epochs demonstrated that the combination of beta LRTC with alpha amplitude provided the highest classification accuracy (above 80%). These results suggest that loss of consciousness is accompanied by an augmentation of temporal persistence in neuronal oscillation amplitude, which may reflect an increase in regularity and a decrease in network repertoire compared to the brain's activity during resting-state consciousness.
-
The physiological mechanisms by which anaesthetic drugs modulate oscillatory brain activity remain poorly understood. Combining human data, mathematical and computational analysis of both spiking and mean-field models, we investigated the spectral dynamics of encephalographic (EEG) beta-alpha oscillations, observed in human patients undergoing general anaesthesia. The effect of anaesthetics can be modelled as a reduction of neural fluctuation intensity, and/or an increase in inhibitory synaptic gain in the thalamo-cortical circuit. ⋯ In our model, increased synaptic inhibition alone, did not correlate with the clinically-observed encephalographic spectral changes, but did cause the anaesthetic-induced decrease in neuronal firing rate. Taken together, our results show that such a non-linear transition results in functional fragmentation of cortical and thalamic populations; highly correlated intra-population dynamics triggered by anaesthesia decouple and isolate neural populations. Our results are able to parsimoniously unify and replicate the observed anaesthetic effects on both the EEG spectra and inter-regional connectivity, and further highlight the importance of neural activity fluctuations in the genesis of altered brain states.
-
Quantitative susceptibility mapping (QSM) and effective transverse relaxation rate (R2*) mapping are both highly sensitive to variations in brain iron content. Clinical Magnetic Resonance Imaging (MRI) studies report changes of susceptibilities and relaxation rates in various neurological diseases which are often equated with changes in regional brain iron content. However, these mentioned metrics lack specificity for iron, since they are also influenced by the presence of myelin. ⋯ Myelin intensities correlated negatively with QSM (r = -0.352), indicating a diamagnetic effect of myelin on susceptibility. Myelin intensities were higher in the thalamus than in the basal ganglia. A significant relationship was nonetheless observed between quantitative iron values and QSM, confirming the applicability of the latter in this brain region for iron quantification.