Brain pathology
-
Using in vitro models, our laboratory in collaboration with those of Pierluigi Nicotera (University of Konstanz, Germany) and Stan Orrenius (Karolinska Institute) has recently shown that fulminant insults to the nervous system from excitotoxins or free radicals result in neuronal cell death from necrosis, while more subtle insults result in delayed apoptosis. Over the past dozen or so years, mounting evidence has suggested that excitotoxins, such as glutamate, result in neuronal cell death after stroke. More recent evidence has suggested that in addition to necrotic cell death in the ischemic core, a number of neurons may also undergo apoptosis. ⋯ A final common pathway for neuronal susceptibility appears to be operative, similar to that observed in stroke and several neurodegenerative diseases. This mechanism involves excessive activation of N-methyl-D-aspartate (NMDA) receptor-operated channels, with resultant excessive influx of Ca2+ and the generation of free radicals, leading to neuronal damage. With the very recent development of clinically-tolerated NMDA antagonists, as discussed here, there is hope for future pharmacological intervention.