Brain pathology
-
Physiological cell death (PCD), a process by which redundant or unsuccessful neurons are deleted by apoptosis (cell suicide) from the developing central nervous system, has been recognized as a natural phenomenon for many years. Whether environmental factors can interact with PCD mechanisms to increase the number of neurons undergoing PCD, thereby converting this natural phenomenon into a pathological process, is an interesting question for which new answers are just now becoming available. In a series of recent studies we have shown that 2 major classes of drugs (those that block NMDA glutamate receptors and those that promote GABAA receptor activation), when administered to immature rodents during the period of synaptogenesis, trigger widespread apoptotic neurodegeneration throughout the developing brain. ⋯ Thus, there is a period in pre- and postnatal human development, lasting for several years, during which immature CNS neurons are prone to commit suicide if exposed to intoxicating concentrations of drugs with NMDA antagonist or GABAmimetic properties. These findings are important, not only because of their relevance to the FAS, but because there are many agents in the human environment, other than ethanol, that have NMDA antagonist or GABAmimetic properties. Such agents include drugs that may be abused by pregnant mothers (ethanol, phencyclidine [angel dust], ketamine [Special K], nitrous oxide [laughing gas], barbiturates, benzodiazepines), and many medicinals used in obstetric and pediatric neurology (anticonvulsants), and anesthesiology (all general anesthetics are either NMDA antagonists or GABAmimetics).