Brain pathology
-
Repetitive brain trauma is associated with a progressive neurological deterioration, now termed as chronic traumatic encephalopathy (CTE). Most instances of CTE occur in association with the play of sports, but CTE has also been reported in association with blast injuries and other neurotrauma. Symptoms of CTE include behavioral and mood changes, memory loss, cognitive impairment and dementia. ⋯ Severely affected cases show p-tau pathology throughout the brain. Abnormalities in phosphorylated 43 kDa TAR DNA-binding protein are found in most cases of CTE; beta-amyloid is identified in 43%, associated with age. Given the importance of sports participation and physical exercise to physical and psychological health as well as disease resilience, it is critical to identify the genetic risk factors for CTE as well as to understand how other variables, such as stress, age at exposure, gender, substance abuse and other exposures, contribute to the development of CTE.
-
Review Case Reports
Clinical features of repetitive traumatic brain injury and chronic traumatic encephalopathy.
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease characterized by a distinct pattern of hyperphosphorylated tau (p-tau). Thought to be caused by repetitive concussive and subconcussive injuries, CTE is considered largely preventable. The majority of neuropathologically confirmed cases have occurred in professional contact sport athletes (eg, boxing, football). ⋯ The goal of this article is to characterize the clinical concepts associated with short- and long-term effects of repetitive traumatic brain injury, with a special emphasis on new clinical diagnostic criteria for CTE. Utilizing these new diagnostic criteria, two cases of neuropathologically confirmed CTE, one in a professional football player and one in a professional boxer, are reported. Differences in cerebellar pathology in CTE confirmed cases in boxing and football are discussed.
-
We have developed the first immature large animal translational treatment trial of a pharmacologic intervention for traumatic brain injury (TBI) in children. The preclinical trial design includes multiple doses of the intervention in two different injury types (focal and diffuse) to bracket the range seen in clinical injury and uses two post-TBI delays to drug administration. Cyclosporin A (CsA) was used as a case study in our first implementation of the platform because of its success in multiple preclinical adult rodent TBI models and its current use in children for other indications. ⋯ Effective CsA doses were identified to study in Tier 2. In the Tier 2 paradigm, agent is administered in a porcine intensive care unit utilizing neurological monitoring and clinically relevant management strategies, and intervention efficacy is defined as improvement in longer term behavioral endpoints above untreated injured animals. In summary, this innovative large animal preclinical study design can be applied to future evaluations of other agents that promote recovery or repair after TBI.