European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
Controlled, deliberate hypotension during anesthesia for major spinal surgery reduces intraoperative blood loss and transfusion requirement. Hypotension may be achieved with increased doses of volatile anesthetic agents or by continuous infusion of vasodilating drugs. Safe application of this technique requires knowledge of the physiology of hemorrhagic shock and close intraoperative monitoring to avoid vasoconstriction and end-organ ischemia.
-
Orthopaedic patients frequently require blood transfusions to treat peri-operative anemia. Research in the area of hemoglobin substitutes has been of great interest since it holds the promise of reducing the reliance on allogeneic blood transfusions. The three categories of hemoglobin substitutes are (1) cell-free, extracellular hemoglobin preparations made from human or bovine hemoglobin (hemoglobin-based oxygen carriers or HBOCs); (2) fluorine-substituted linear or cyclic carbon chains with a high oxygen-carrying capacity (perfluorocarbons); and (3) liposome-encapsulated hemoglobin. ⋯ This has been demonstrated in vascular, cardiothoracic, and orthopaedic patients. HBOC-201, which is a preparation of cell-free bovine hemoglobin, has been approved for clinical use in South Africa. These products may well become an important tool for physicians treating peri-operative anemia in orthopaedic patients.
-
This article reviews the extent of blood loss in spine surgery for scoliosis corrections in the pediatric age group. An extensive literature review presents blood loss values in surgery for adolescent idiopathic scoliosis, cerebral palsy, Duchenne muscular dystrophy, spinal muscular atrophy, and myelomeningocoele. ⋯ Within the neuromuscular group those with Duchenne muscular dystrophy demonstrate the highest mean levels of blood loss. Blood loss is also shown to be progressively greater with increasing numbers of vertebral levels incorporated into the fusion, with posterior fusions compared to anterior fusions, and in those patients having both anterior and posterior fusions.
-
The finite helical-axes method can be used to describe the three-dimensional in vitro kinematics of the spine. However, this method still suffers from large stochastic calculation errors and poorly conceived visualisation techniques. The aim of the present study, therefore, was to improve the currently used finite helical axes description, by use of a less error-prone calculation algorithm and a new visualisation technique, and to apply this improved method to the study of the three-dimensional in vitro kinematics of the spine. ⋯ The implantation of the prosthetic disc nucleus, for the most part, more than reversed this effect: the axes became oriented almost parallel to each other. The experiments showed that the present improved description of finite helical axes is a valid and useful tool to characterise the three-dimensional in vitro kinematics of the intact, injured and stabilised spine. The main advantage of this new method is the comprehensive visualisation of joint function with respect to the individual anatomy.
-
Spinal burst fractures account for about 15% of spinal injuries and, because of their predominance in the younger population, there are large associated social and healthcare costs. Although several experimental studies have investigated the burst fracture process, little work has been undertaken using computational methods. The aim of this study was to develop a finite element model of the fracture process and, in combination with experimental data, gain a better understanding of the fracture event and mechanism of injury. ⋯ The results showed that the posterior longitudinal ligament became stretched and at higher energies the spinal cord and the dura mater were compressed by the fragment. These structures deformed to a maximum level before forcing the fragment back towards the vertebral body. The final position of the fragment did not therefore represent the maximum dynamic canal occlusion.