European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
Adolescent idiopathic scoliosis (AIS) is a progressive growth disease that affects spinal anatomy, mobility, and left-right trunk symmetry. Consequently, AIS can modify human locomotion. Very few studies have investigated a simple activity like walking in a cohort of well-defined untreated patients with scoliosis. ⋯ With the naked eye, one could not see any difference from controls, but with powerful gait analysis technology, the pelvic frontal motion (right-left tilting) was reduced, as was the motion in the hips and shoulder. Surprisingly, no asymmetry was noted but the spine seemed dynamically stiffened by the longer contraction time of major spinal and pelvic muscles. Further studies are needed to evaluate the origin and consequences of these observations.
-
Anterior cervical discectomy with fusion is a common surgical procedure for patients suffering pain and/or neurological deficits and unresponsive to conservative management. For decades, autologous bone grafted from the iliac crest has been used as a substrate for cervical arthrodesis. However patient dissatisfaction with donor site morbidity has led to the search for alternative techniques. We present a literature review examining the progress of available grafting options as assessed in human clinical trials, considering allograft-based, synthetic, factor- and cell-based technologies.
-
Comparative Study
Arthrodesis to L5 versus S1 in long instrumentation and fusion for degenerative lumbar scoliosis.
There is a debate regarding the distal fusion level for degenerative lumbar scoliosis. Whether a healthy L5-S1 motion segment should be included or not in the fusion remains controversial. The purpose of this study was to determine the optimal indication for the fusion to the sacrum, and to compare the results of distal fusion to L5 versus the sacrum in the long instrumented fusion for degenerative lumbar scoliosis. ⋯ In the L5 group, there were nine patients of complications at L5-S1 segment, including adjacent segment disease at L5-S1 and loosening of L5 screws. Seven of the nine patients showed preoperative sagittal imbalance and/or lumbar hypolordosis, which might be risk factors of complications at L5-S1. For the patients with sagittal imbalance and lumbar hypolordosis, L5-S1 should be included in the fusion even if L5-S1 disc was minimal degeneration.
-
Interventional procedures are associated with high radiation doses for both patients and surgeons. To reduce the risk from ionizing radiation, it is essential to minimize radiation dose. This prospective study was performed to evaluate the effectiveness in reducing radiation dose during facet joint injection in the lumbar spine and to evaluate the feasibility and possibilities of the new real time image guidance system SabreSource. ⋯ There was no difference in pain reduction between the two groups (60 vs. 61.5%; P = 0.001) but the radiation dose was significantly smaller with the new SabreSource system (reduction of radiation dose 32.7%, P = 0.01; reduction of mean entrance surface dose 32.3%, P = 0.01). The SabreSource System significantly reduced the radiation dose received during the injection therapy of the lumbar facet joints. With minimal effort for the setup at the beginning of a session, the system is easy to handle and can be helpful for other injection therapies (e.g. nerve root block therapies).
-
An anatomical study of the extraforaminal attachments of the thoracic spinal nerves was performed using human spinal columns. The objectives of the study are to identify and describe the existence of ligamentous structures at each thoracic level that attach spinal nerves to structures at the extraforaminal region. During the last 120 years, several mechanisms have been described to protect the spinal nerve against traction. ⋯ The ligaments consist mainly of collagenous fibers. In conclusion, at the thoracic level, direct ligamentous connections exist between extraforaminal thoracic spinal nerves and nearby structures. They may serve as a protective mechanism against traction and compression of the nerves by positioning the nerve in the intervertebral foramen.