European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
Previous studies have shown the safety and effectiveness of balloon kyphoplasty in the treatment of osteoporotic vertebral compression fractures (OVCFs). MRI and particularly the short tau inversion recovery (STIR) sequence are very sensitive for detecting vertebral edema as a result of fresh fractures or micro-fractures. Therefore, it has a great therapeutic relevance in differentiating vertebral deformities seen by conventional X-ray and CT scans. ⋯ This study confirms the diagnostic benefits of an MRI scan before performing a kyphoplasty. For 16 out of 28 patients, the therapeutic plan was changed because of the information obtained by preoperative MRI. Preoperative MRI helped to generate the correct surgical strategy, by demonstrating the correct location of injury and by detecting concomitant diseases.
-
The present method of C2 laminar screw placement relies on anatomical landmarks for screw placement. Placement of C2 laminar screws using drill template has not been described in the literature. The authors reported on their experience with placement of C2 laminar screws using a novel computer-assisted drill guide template in nine patients undergoing posterior occipito-cervical fusion. ⋯ Postoperative computed tomographic (CT) scanning was available for allowing the evaluation of placement of thirteen C2 laminar screws, all of which were in good position with no spinal canal violation. This study shows a patient-specific template technique that is easy to use, can simplify the surgical act and generates highly accurate C2 laminar screw placement. Advantages of this technology over traditional techniques include planning of the screw trajectory is done completely in the presurgical period as well as the ability to size the screw to the patient's anatomy.
-
Although various posterior insertion angles for screw insertion have been proposed for C1 lateral mass, substantial conclusions have not been reached regarding ideal angles and average length of the screw yet. We aimed to re-consider the morphometry and the ideal trajections of the C1 screw. Morphometric analysis was performed on 40 Turkish dried atlas vertebrae obtained from the Department of Anatomy at the Medical School of Ankara University. ⋯ Strikingly, in 52% of our specimens, the height of the inferior articular process was under 3.5 mm, and in 70% was under 4 mm, which increases the importance of the preparation of the screw entry site. For accommodation of screws of 3.5-mm in diameter, the starting point should be taken as the insertion of the posterior arch at the superior end of the inferior articular process with a cephalic trajection. This study may aid many surgeons in their attempts to place C1 lateral mass screws.
-
Cervical pedicle screw fixation is an effective procedure for stabilising an unstable motion segment; however, it has generally been considered too risky due to the potential for injury to neurovascular structures, such as the spinal cord, nerve roots or vertebral arteries. Since 1995, we have treated 144 unstable cervical injury patients with pedicle screws using a fluoroscopy-assisted pedicle axis view technique. The purpose of this study was to investigate the efficacy of this technique in accurately placing pedicle screws to treat unstable cervical injuries, and the ensuing clinical outcomes and complications. ⋯ Pre- and postoperative tracheotomy was required in 20 (13.9%) of the 144 patients. However, the tracheotomies were easily performed, because those patients underwent posterior surgery alone without postoperative external fixation. The placement of cervical pedicle screws using a fluoroscopy-assisted pedicle axis view technique provided good clinical results and a few complications for unstable cervical injuries, but a careful surgical procedure was needed to safely insert the screws and more improvement in imaging and navigation system is expected.
-
Percutaneous vertebroplasty, comprising an injection of polymethylmethacrylate (PMMA) into vertebral bodies, is a practical procedure for the stabilization of osteoporotic compression fractures as well as other weakening lesions. Cement leakage is considered to be one of the major and most severe complications during percutaneous vertebroplasty. The viscosity of the material plays a key role in this context. ⋯ In order to get a better understanding of the clinical observations, cement viscosity during hardening at different ambient temperatures and by simulation of the body temperature was investigated in vitro. It could be concluded, that the direct viscosity assessment with a rheometer during vertebroplasty can help clinicians to define a lower threshold viscosity and thereby decrease the risk of leakage and make adjustments to their injection technique in real time. Secondly, the acceleration in hardening of PMMA-based cements at body temperature can be useful in minimizing leakages by addressing them with a short injection break.