European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
It is clear that individual outcomes of spine surgery can be quite heterogeneous. When consenting a patient for surgery, it is important to be able to offer an individualized prediction regarding the likely outcome. This study used a comprehensive set of data collected over 12 years in an in-house registry to develop a parsimonious model to predict the multidimensional outcome of patients undergoing surgery for degenerative pathologies of the thoracic, lumbar or cervical spine. ⋯ The models provided estimates to enable a bespoke prediction of the outcome of surgery for individual patients with varying degenerative pathologies and baseline characteristics. The models form the basis of a simple, freely-available online prognostic tool developed to improve access to and usability of prognostic information in clinical practice. It is hoped that, following confirmation of its validity and practical utility, the tool will ultimately serve to facilitate decision-making and the management of patients' expectations.
-
The majority of lumbar spine surgery referrals do not proceed to surgery. Early identification of surgical candidates in the referral process could expedite their care, whilst allowing timelier implementation of non-operative strategies for those who are unlikely to require surgery. By identifying clinical and imaging features associated with progression to surgery in the literature, we aimed to develop a machine learning model able to mirror surgical decision-making and calculate the chance of surgery based on the identified features. ⋯ Through use of machine learning techniques, we were able to model surgical decision-making with a high degree of accuracy. By demonstrating that the operating patterns of single centres can be modelled successfully, the potential for more targeted and tailored referrals becomes possible, reducing outpatient wait-list duration and increasing surgical conversion rates.
-
Lumbar spinal stenosis (LSS) is a condition affecting several hundreds of thousands of adults in the United States each year and is associated with significant economic burden. The current decision-making practice to determine surgical candidacy for LSS is often subjective and clinician specific. In this study, we hypothesize that the performance of artificial intelligence (AI) methods could prove comparable in terms of prediction accuracy to that of a panel of spine experts. ⋯ Our results suggest that AI can be used to automate the evaluation of surgical candidacy for LSS with performance comparable to a multidisciplinary panel of physicians.
-
Lumbar disc degeneration (LDD) may be related to aging, biomechanical and genetic factors. Despite the extensive work on understanding its etiology, there is currently no automated tool for accurate prediction of its progression. ⋯ This is the first attempt of using deep learning to predict LDD progression on a large dataset with 5-year follow-up. Requiring no human interference, our pipeline can potentially achieve similar predictive performances in new settings with minimal efforts.
-
Anterior cervical discectomy and fusion (ACDF) is a common surgical treatment for degenerative disease in the cervical spine. However, resultant biomechanical alterations may predispose to early-onset adjacent segment degeneration (EO-ASD), which may become symptomatic and require reoperation. This study aimed to develop and validate a machine learning (ML) model to predict EO-ASD following ACDF. ⋯ Through an ML approach, the model identified risk factors and predicted development of EO-ASD following ACDF with good discrimination and overall performance. By addressing the shortcomings of traditional statistics, ML techniques can support discovery, clinical decision-making, and precision-based spine care.