European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
The field of artificial intelligence is ever growing and the applications of machine learning in spine care are continuously advancing. Given the advent of the intelligence-based spine care model, understanding the evolution of computation as it applies to diagnosis, treatment, and adverse event prediction is of great importance. Therefore, the current review sought to synthesize findings from the literature at the interface of artificial intelligence and spine research. ⋯ Improvements to modern-day computing and accessibility to various imaging modalities allow for innovative discoveries that may arise, for example, from management. Given the imminent future of AI in spine surgery, it is of great importance that practitioners continue to inform themselves regarding AI, its goals, use, and progression. In the future, it will be critical for the spine specialist to be able to discern the utility of novel AI research, particularly as it continues to pervade facets of everyday spine surgery.
-
Artificial intelligence based on deep learning (DL) approaches enables the automatic recognition of anatomic landmarks and subsequent estimation of various spinopelvic parameters. The locations of inflection points (IPs) and apices (APs) in whole-spine lateral radiographs could be mathematically determined by a fully automatic spinal sagittal curvature analysis system. ⋯ The interrater reliability between the proposed DL model and human experts was good to excellent in predicting the locations of IPs, APs, and curvature angles. Future applications should be explored to validate this system and improve its clinical efficiency.
-
Review
Artificial intelligence and spine imaging: limitations, regulatory issues and future direction.
As big data and artificial intelligence (AI) in spine care, and medicine as a whole, continue to be at the forefront of research, careful consideration to the quality and techniques utilized is necessary. Predictive modeling, data science, and deep analytics have taken center stage. Within that space, AI and machine learning (ML) approaches toward the use of spine imaging have gathered considerable attention in the past decade. Although several benefits of such applications exist, limitations are also present and need to be considered. ⋯ Recommendations were provided for conducting high-quality, standardized AI applications for spine imaging.
-
It is suggested that non-specific low back pain (LBP) can be related to nerve ingrowth along granulation tissue in disc fissures, extending into the outer layers of the annulus fibrosus. Present study aimed to investigate if machine-learning modelling of magnetic resonance imaging (MRI) data can classify such fissures as well as pain, provoked by discography, with plausible accuracy and precision. ⋯ The present study showed that machine-learning modelling based on MRI can classify outer annular fissures with very high diagnostic accuracy and, hence, enable individualized diagnostics. However, the model only demonstrated moderate diagnostic accuracy regarding pain that could be assigned to either a non-sufficient model or the used pain reference.
-
The present study compared manual and automated measurement of Cobb angle in idiopathic scoliosis based on deep learning keypoint detection technology. ⋯ The automated measurement results agreed with the experts' annotation and had a high degree of reliability when the Cobb angle did not exceed 90° and could locate multiple curves in the same scoliosis case simultaneously in a short period of time. Our results need to be verified in more cases in the future.