European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
Lumbar disc degeneration (LDD) may be related to aging, biomechanical and genetic factors. Despite the extensive work on understanding its etiology, there is currently no automated tool for accurate prediction of its progression. ⋯ This is the first attempt of using deep learning to predict LDD progression on a large dataset with 5-year follow-up. Requiring no human interference, our pipeline can potentially achieve similar predictive performances in new settings with minimal efforts.
-
Anterior cervical discectomy and fusion (ACDF) is a common surgical treatment for degenerative disease in the cervical spine. However, resultant biomechanical alterations may predispose to early-onset adjacent segment degeneration (EO-ASD), which may become symptomatic and require reoperation. This study aimed to develop and validate a machine learning (ML) model to predict EO-ASD following ACDF. ⋯ Through an ML approach, the model identified risk factors and predicted development of EO-ASD following ACDF with good discrimination and overall performance. By addressing the shortcomings of traditional statistics, ML techniques can support discovery, clinical decision-making, and precision-based spine care.
-
The field of artificial intelligence is ever growing and the applications of machine learning in spine care are continuously advancing. Given the advent of the intelligence-based spine care model, understanding the evolution of computation as it applies to diagnosis, treatment, and adverse event prediction is of great importance. Therefore, the current review sought to synthesize findings from the literature at the interface of artificial intelligence and spine research. ⋯ Improvements to modern-day computing and accessibility to various imaging modalities allow for innovative discoveries that may arise, for example, from management. Given the imminent future of AI in spine surgery, it is of great importance that practitioners continue to inform themselves regarding AI, its goals, use, and progression. In the future, it will be critical for the spine specialist to be able to discern the utility of novel AI research, particularly as it continues to pervade facets of everyday spine surgery.
-
Artificial intelligence based on deep learning (DL) approaches enables the automatic recognition of anatomic landmarks and subsequent estimation of various spinopelvic parameters. The locations of inflection points (IPs) and apices (APs) in whole-spine lateral radiographs could be mathematically determined by a fully automatic spinal sagittal curvature analysis system. ⋯ The interrater reliability between the proposed DL model and human experts was good to excellent in predicting the locations of IPs, APs, and curvature angles. Future applications should be explored to validate this system and improve its clinical efficiency.
-
To summarize and critically evaluate the existing studies for spinopelvic measurements of sagittal balance that are based on deep learning (DL). ⋯ Diagnostic: individual cross-sectional studies with the consistently applied reference standard and blinding.