European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
-
The present study compared manual and automated measurement of Cobb angle in idiopathic scoliosis based on deep learning keypoint detection technology. ⋯ The automated measurement results agreed with the experts' annotation and had a high degree of reliability when the Cobb angle did not exceed 90° and could locate multiple curves in the same scoliosis case simultaneously in a short period of time. Our results need to be verified in more cases in the future.
-
To propose a fully automated deep learning (DL) framework for the vertebral morphometry and Cobb angle measurement from three-dimensional (3D) computed tomography (CT) images of the spine, and validate the proposed framework on an external database. ⋯ The obtained results are within the range of values, obtained by existing DL approaches without external validation. The results therefore confirm the scalability of the proposed DL framework from the perspective of application to external data, and time and computational resource consumption required for framework training.
-
Imaging studies about the relevance of muscles in spinal disorders, and sarcopenia in general, require the segmentation of the muscles in the images which is very labour-intensive if performed manually and poses a practical limit to the number of investigated subjects. This study aimed at developing a deep learning-based tool able to fully automatically perform an accurate segmentation of the lumbar muscles in axial MRI scans, and at validating the new tool on an external dataset. ⋯ The externally validated deep neural network was able to perform the segmentation of the paravertebral muscles in an accurate and fully automated manner, although it is not without limitations. The model is therefore a suitable research tool to perform large-scale studies in the field of spinal disorders and sarcopenia, overcoming the limitations of non-automated methods.
-
The paraspinal muscles (PSM) are a key feature potentially related to low back pain (LBP), and their structure and composition can be quantified using MRI. Most commonly, quantifying PSM measures across individual muscles and individual spinal levels renders numerous separate metrics that are analyzed in isolation. However, comprehensive multivariate approaches would be more appropriate for analyzing the PSM within an individual. To establish and test these methods, we hypothesized that multivariate summaries of PSM MRI measures would associate with the presence of LBP symptoms (i.e., pain intensity). ⋯ Our analysis considers the spine as a multi-segmental unit as opposed to a series of discrete and isolated spine segments. Integrative and multivariate approaches can be used to distill large and complex imaging datasets thereby improving the clinical utility of MRI-based biomarkers, and providing metrics for further analytical goals, including phenotyping.