Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
-
This review sets out to discuss the foremost applications of artificial intelligence (AI), particularly deep learning (DL) algorithms, in single-photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging. To this end, the underlying limitations/challenges of these imaging modalities are briefly discussed followed by a description of AI-based solutions proposed to address these challenges. ⋯ A brief description of deep learning algorithms and the fundamental architectures used for these applications is also provided. Finally, the challenges, opportunities, and barriers to full-scale validation and adoption of AI-based solutions for improvement of image quality and quantitative accuracy of PET and SPECT images in the clinic are discussed.
-
To perform a systematic review on the research on the application of artificial intelligence (AI) to imaging published in Italy and identify its fields of application, methods and results. ⋯ We are witnessing an unprecedented interest in AI applied to imaging in Italy, in a diversity of fields and imaging techniques. Further initiatives are needed to build common frameworks and databases, collaborations among different types of institutions, and guidelines for research on AI.
-
Artificial intelligence (AI) has recently become a very popular buzzword, as a consequence of disruptive technical advances and impressive experimental results, notably in the field of image analysis and processing. In medicine, specialties where images are central, like radiology, pathology or oncology, have seized the opportunity and considerable efforts in research and development have been deployed to transfer the potential of AI to clinical applications. ⋯ In addition, we discuss the new trends and future research directions. This will help the reader to understand how AI methods are now becoming an ubiquitous tool in any medical image analysis workflow and pave the way for the clinical implementation of AI-based solutions.
-
Over the last decade there has been an extensive evolution in the Artificial Intelligence (AI) field. Modern radiation oncology is based on the exploitation of advanced computational methods aiming to personalization and high diagnostic and therapeutic precision. The quantity of the available imaging data and the increased developments of Machine Learning (ML), particularly Deep Learning (DL), triggered the research on uncovering "hidden" biomarkers and quantitative features from anatomical and functional medical images. ⋯ However, most of them are using limited datasets and lack generalized applicability. In this study we review the basics of radiomics feature extraction, DNNs in image analysis, and major interpretability methods that help enable explainable AI. Furthermore, we discuss the crucial requirement of multicenter recruitment of large datasets, increasing the biomarkers variability, so as to establish the potential clinical value of radiomics and the development of robust explainable AI models.
-
To investigate the biophysical meaning of Diffusion Kurtosis Imaging (DKI) parameters via correlations with the perfusion parameters obtained from a long Dynamic Contrast Enhanced MRI scan, in head and neck (HN) cancer. ⋯ A weak to intermediate correlation was found between DKI parameters and both Kep and ve. The kurtosis was associated to the intratumoral heterogeneity and complexity of the capillary permeability, expressed by En(Kep).