Stem cells
-
Alzheimer's disease (AD) is characterized by the deposition of amyloid-beta peptide (Abeta) and the formation of neurofibrillary tangles. Transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) has been suggested as a potential therapeutic approach to prevent various neurodegenerative disorders, including AD. However, the actual therapeutic impact of BM-MSCs and their mechanism of action in AD have not yet been ascertained. ⋯ Furthermore, APP/PS1 mice treated with BM-MSCs had decreased tau hyperphosphorylation and improved cognitive function. In conclusion, BM-MSCs can modulate immune/inflammatory responses in AD mice, ameliorate their pathophysiology, and improve the cognitive decline associated with Abeta deposits. These results demonstrate that BM-MSCs are a potential new therapeutic agent for AD.
-
The stem cell niche plays an important role in the microenvironmental regulation of hematopoietic stem cells, but the integration of niche activity remains poorly understood. In this study, we show that a functional deficiency of Bis/BAG-3/CAIR-1, a protein related to apoptosis and the response to cellular stress, results in perturbation of the vascular stem cell niche, causing a series of hematopoietic derangements. Mice with a targeted disruption of bis (bis(-/-)) exhibited a loss of hematopoietic stem cells and defective B-cell development. ⋯ Subsequent analysis of bis(-/-) mice bone marrow revealed a characteristic defect in the vascular stem cell niche that included the defective growth of stromal progenitor cells in colony forming unit-fibroblasts, the defect in sinusoidal endothelium, and the loss of stromal cells expressing CXCL-12 or IL-7 in the bone marrow. In contrast, no abnormalities were observed in the growth and hematopoietic supporting activities of osteoblasts from bis(-/-) mice bone marrows. Collectively, these results indicate that Bis functions to mediate cellular regulation of the stem cell niche on the vascular compartment and suggest that the vascular and osteoblastic compartments of the stem cell niche can be independently regulated during the in vivo orchestration of hematopoiesis.