Physiological measurement
-
Physiological measurement · Sep 2010
Frequency spectrum analysis of finger photoplethysmographic waveform variability during haemodialysis.
This study investigates the peripheral circulatory and autonomic response to volume withdrawal in haemodialysis based on spectral analysis of photoplethysmographic waveform variability (PPGV). Frequency spectrum analysis was performed on the baseline and pulse amplitude variabilities of the finger infrared photoplethysmographic (PPG) waveform and on heart rate variability extracted from the ECG signal collected from 18 kidney failure patients undergoing haemodialysis. ⋯ The augmentation of LF powers in PPGV during haemodialysis may indicate the recovery and possibly further enhancement of peripheral sympathetic vascular modulation subsequent to volume unloading, whilst the increase in respiratory HF power in PPGV is most likely a sign of preload reduction. Spectral analysis of finger PPGV may provide valuable information on the autonomic vascular response to blood volume reduction in haemodialysis, and can be potentially utilized as a non-invasive tool for assessing peripheral circulatory control during routine dialysis procedure.
-
Physiological measurement · Sep 2010
Clinical TrialPhotoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions.
In this paper we assessed the possibility of using the pulse rate variability (PRV) extracted from the photoplethysmography signal as an alternative measurement of the HRV signal in non-stationary conditions. The study is based on analysis of the changes observed during a tilt table test in the heart rate modulation of 17 young subjects. First, the classical indices of HRV analysis were compared to the indices from PRV in intervals where stationarity was assumed. ⋯ Time-frequency analysis revealed that the TF spectra of both signals were highly correlated (0.99 +/- 0.01); the difference between the instantaneous power, in the LF and HF bands, obtained from HRV and PRV was small (<10(-3) s(-2)) and their temporal patterns were highly correlated (0.98 +/- 0.04 and 0.95 +/- 0.06 in the LF and HF bands, respectively) and TF coherence in the LF and HF bands was high (0.97 +/- 0.04 and 0.89 +/- 0.08, respectively). Finally, the instantaneous power in the LF band was observed to significantly increase during head-up tilt by both HRV and PRV analysis. These results suggest that although some differences in the time-varying spectral indices extracted from HRV and PRV exist, mainly in the HF band associated with respiration, PRV could be used as a surrogate of HRV during non-stationary conditions, at least during the tilt table test.
-
Physiological measurement · Sep 2010
Evaluation of the cerebrovascular pressure reactivity index using non-invasive finapres arterial blood pressure.
A pressure reactivity index (PRx) can be assessed in patients with continuous monitoring of arterial blood pressure (ABP) and intracranial pressure (ICP) as a moving correlation coefficient between slow fluctuations of these two signals within a low frequency bandwidth. The study aimed to investigate whether the invasive ABP monitoring can be replaced with non-invasive measurement of ABP using a Finapres plethysmograph (fABP) to calculate the fPRx. There is a well-defined group of patients, suffering from hydrocephalus and undergoing CSF pressure monitoring, which may benefit from such a measurement. 41 simultaneous day-by-day monitoring of ICP, ABP and fABP were performed for about 30 min in 10 head injury patients. ⋯ The fPRx distinguished between active and passive reactivity in more than 89% cases. The fPRx can be used with care for assessment of cerebrovascular reactivity in patients for whom invasive ABP measurement is not feasible. The fPRx is sensitive enough to distinguish between functional and deranged reactivity.
-
Physiological measurement · Aug 2010
Regional overdistension identified with electrical impedance tomography in the perflubron-treated lung.
Regional lung overdistension occurring during high frequency oscillatory ventilation (HFOV) and partial liquid ventilation (PLV) was investigated in a prospective animal trial using 18 mechanically ventilated Yorkshire swine under general anesthesia. Lung injury was induced with saline lavage and augmented using large tidal volumes. Electrical impedance tomography (EIT) and regional lung histopathology were used to identify regional lung overdistension during HFOV. ⋯ The animals were transitioned from conventional ventilation to HFOV, and a slow inflation-deflation maneuver was performed by changing mean airway pressure (Paw) by 5 cmH(2)O every 15 min to a maximum Paw of 40 cmH(2)O. In dependent lung areas, the PFOB-Hi (3 ml kg(-1)) group, in comparison with the control group, was associated with significantly greater alveolar overdistension seen on lung histopathology (P < 0.001 compared to control), a decreased mean impedance (P < 0.05 compared to the control group) and a decreased ventilation-induced impedance change during HFOV (P < 0.05 compared to the control group). We conclude that treatment with PFOB-Hi during HFOV compared to a control group in an animal model of lung injury led to regional overdistension of dependent lung areas, as evidenced by increased alveolar overdistension on lung histopathology, decreased mean lung impedance and decreased HFOV-induced regional lung volume changes as measured by EIT.
-
Physiological measurement · Jul 2010
Contactless and continuous monitoring of heart rate based on photoplethysmography on a mattress.
This paper reports a novel contactless monitoring method to record photoplethysmogram (PPG) on a mattress for the continuous measurement of heart rate (HR). PPGs were obtained from subjects' fingers and backs with and without making a direct contact between the PPG sensor and their skin when they rested in a supine position on the mattress. Electrocardiograms (ECGs) were measured from the subjects' limbs for reference. ⋯ Beat-to-beat HR derived from contactless PPG measurement was comparable to those measured from contact PPG and ECG measurements. Thus we found that contactless PPG could be captured from the subjects' backs and it was sufficient to provide accurate HR measurements. This contactless monitoring of PPG has the potential to reduce obstruction in sleep and provide clinical evaluation in sleep study.