Anaesthesia
-
Multicenter Study Observational Study
Quantifying hospital environmental ventilation using carbon dioxide monitoring - a multicentre study.
The COVID-19 pandemic has highlighted the importance of environmental ventilation in reducing airborne pathogen transmission. Carbon dioxide monitoring is recommended in the community to ensure adequate ventilation. Dynamic measurements of ventilation quantifying human exhaled waste gas accumulation are not conducted routinely in hospitals. ⋯ We conclude that staff break, office and clinical areas on acute medical and respiratory wards frequently had inadequate ventilation, potentially increasing the risks of airborne pathogen transmission to staff and patients. Conversely, ventilation was consistently high in the ICU and operating theatre clinical environments. Carbon dioxide monitoring could be used to measure and guide improvements in hospital ventilation.
-
It is unclear if cardiopulmonary resuscitation is an aerosol-generating procedure and whether this poses a risk of airborne disease transmission to healthcare workers and bystanders. Use of airborne transmission precautions during cardiopulmonary resuscitation may confer rescuer protection but risks patient harm due to delays in commencing treatment. To quantify the risk of respiratory aerosol generation during cardiopulmonary resuscitation in humans, we conducted an aerosol monitoring study during out-of-hospital cardiac arrests. ⋯ The porcine model also confirmed that both defibrillation and chest compressions generate high concentrations of aerosol independent of, but synergistic with, ventilation. In conclusion, multiple components of cardiopulmonary resuscitation generate high concentrations of respiratory aerosol. We recommend that airborne transmission precautions are warranted in the setting of high-risk pathogens, until the airway is secured with an airway device and breathing system with a filter.