Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society
-
Comparative Study
Hypertrophic scar tissues and fibroblasts produce more transforming growth factor-beta1 mRNA and protein than normal skin and cells.
Transforming growth factor-beta1 is a well-known fibrogenic cytokine produced by many types of cells including dermal fibroblasts. To investigate whether this fibrogenic cytokine is involved in development of hypertrophic scar, transforming growth factor-beta1 gene expression was evaluated in small skin samples. Because a sufficient quantity of normal skin from patients with hypertrophic scar is not readily available, a reverse transcription-polymerase chain reaction technique was used. ⋯ These results were supported by Northern analysis for transforming growth factor-beta1 mRNA in the cells and enzyme-linked immunosorbent assay for TGF-beta1 protein in fibroblast-conditioned medium. In conclusion, hypertrophic scar tissue and fibroblasts produce more mRNA and protein for transforming growth factor-beta1, which may be important in hypertrophic scar formation. The construction of the gene specific internal standard for reverse transcription-polymerase chain reaction is a simple and reliable procedure useful to quantitate gene expression in a small amount of tissue or number of cells.