Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society
-
In this study, the effect of different wound treatments on contraction was evaluated in an established porcine model. In two separately conducted experiments full thickness wounds treated with artificial dermal substitute, split thickness skin graft (STSG), meshed STSG applied in combination with cultured keratinocytes or meshed STSG alone were compared with untreated wounds. The surface area of all wounds was quantified at regular time intervals. ⋯ The untreated control wounds showed a greater rate of contraction and had almost closed by day 20. This study demonstrates that there is a significant difference in contraction between wounds treated with artificial dermal substitute and control wounds and between wounds treated with STSG with cultured keratinocytes and meshed STSG alone. STSG with cultured keratinocytes, unmeshed STSG, and artificial dermal substitute all reduced wound contraction significantly.
-
Randomized Controlled Trial Multicenter Study
Randomized, multicenter, double-blind, and placebo-controlled trial using topical recombinant human acidic fibroblast growth factor for deep partial-thickness burns and skin graft donor site.
Wound healing is a dynamic and complex biologic process that could be accelerated by growth factors. To investigate the efficacy of topical recombinant human acidic fibroblast growth factor (rh-aFGF) treatment in deep partial-thickness burn or skin graft donor sites, we designed a randomized, multicenter, double-blind, and placebo-controlled clinical trial. The healing rate, fully healed rate, and healing time were evaluated to assess the efficacy of rh-aFGF application. ⋯ The results showed that the healing rate of burn wounds and skin graft donor sites treated by rh-aFGF was significantly higher than that by placebo, and the mean healed time of burn wounds and skin graft donor sites in the rh-aFGF group was significantly the shorter than that in the placebo group. In conclusion, topical administration of rh-aFGF can accelerate the wound healing process and shorten the healed time. It is a potential therapeutic application for promoting healing of deep partial-thickness burns or skin graft donor sites.
-
The multipotent growth factor transforming growth factor (TGF)-beta1 is consistently linked with fibrosis and scarring. The perfect (scarless) healing of cutaneous wounds in early gestational age fetuses is proposed to be due to this tissue's predominance of the TGF-beta3 isoform over the profibrotic TGF-beta1 and 2. Nevertheless, TGF-beta1 is present during wound healing in the early fetus and recently we demonstrated that relevant intracellular signaling pathways are activated (albeit transiently) on TGF-beta1 stimulation. ⋯ Furthermore, other response genes responded in a delayed fashion (TGF-beta3) compared with that seen in the more developmentally mature postnatal fibroblasts. Finally, genes unaltered by TGF-beta stimulation in postnatal cells, TGF-beta2 and collagen III, were up-regulated in fetal cells. These developmentally related differences in fibroblast response to TGF-beta1 may influence wound-healing outcome, i.e., perfect regeneration or fibrosis.