Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society
-
Randomized Controlled Trial Multicenter Study
Randomized, multicenter, double-blind, and placebo-controlled trial using topical recombinant human acidic fibroblast growth factor for deep partial-thickness burns and skin graft donor site.
Wound healing is a dynamic and complex biologic process that could be accelerated by growth factors. To investigate the efficacy of topical recombinant human acidic fibroblast growth factor (rh-aFGF) treatment in deep partial-thickness burn or skin graft donor sites, we designed a randomized, multicenter, double-blind, and placebo-controlled clinical trial. The healing rate, fully healed rate, and healing time were evaluated to assess the efficacy of rh-aFGF application. ⋯ The results showed that the healing rate of burn wounds and skin graft donor sites treated by rh-aFGF was significantly higher than that by placebo, and the mean healed time of burn wounds and skin graft donor sites in the rh-aFGF group was significantly the shorter than that in the placebo group. In conclusion, topical administration of rh-aFGF can accelerate the wound healing process and shorten the healed time. It is a potential therapeutic application for promoting healing of deep partial-thickness burns or skin graft donor sites.
-
The multipotent growth factor transforming growth factor (TGF)-beta1 is consistently linked with fibrosis and scarring. The perfect (scarless) healing of cutaneous wounds in early gestational age fetuses is proposed to be due to this tissue's predominance of the TGF-beta3 isoform over the profibrotic TGF-beta1 and 2. Nevertheless, TGF-beta1 is present during wound healing in the early fetus and recently we demonstrated that relevant intracellular signaling pathways are activated (albeit transiently) on TGF-beta1 stimulation. ⋯ Furthermore, other response genes responded in a delayed fashion (TGF-beta3) compared with that seen in the more developmentally mature postnatal fibroblasts. Finally, genes unaltered by TGF-beta stimulation in postnatal cells, TGF-beta2 and collagen III, were up-regulated in fetal cells. These developmentally related differences in fibroblast response to TGF-beta1 may influence wound-healing outcome, i.e., perfect regeneration or fibrosis.
-
Hypertrophic scarring after burns is an unsolved problem and remains as devastating today as it was in the 40s and it may be that the main reason for this is the lack of an accepted, useful animal model. The female, red Duroc pig was described as a model of hypertrophic scarring nearly 30 years ago but then vanished from the literature. This seemed strange since the authors reported that 12 of 12 pigs developed thick scar. ⋯ Is it a perfect model of hypertrophic scarring? No. Is it a useful model of hypertrophic scarring? Time will tell. We have now obtained gene expression data from the Duroc/Yorkshire model and analysis is underway.
-
Full-skin substitutes, epidermal substitutes, and dermal substitutes are currently being used to heal deep burns and chronic ulcers. In this study, we investigated which wound-healing mediators are released from these constructs and whether keratinocyte-fibroblast interactions are involved. Autologous skin substitutes were constructed from human keratinocytes, fibroblasts, and acellular donor dermis. ⋯ The secretion of proinflammatory cytokines (IL-1alpha, TNF-alpha), chemokine/mitogen (CCL5) and angiogenic factor (vascular endothelial growth factor) by epidermal substitutes and tissue remodeling factors (tissue inhibitor of metalloproteinase-2, hepatocyte growth factor) by dermal substitutes was not influenced by keratinocyte-fibroblast interactions. The full-skin substitute has a greater potential to stimulate wound healing than epidermal or dermal substitutes. Both epidermal-derived IL-1alpha and TNF-alpha are required to trigger the release of dermal-derived inflammatory/angiogenic mediators from skin substitutes.
-
The concept of using growth factor therapy to induce wound repair has been endorsed in studies that show reduced growth factors in wound fluid from chronic and aged wounds. In this study, we used cell suspensions of allogenic keratinocytes as gene-delivery vehicles for human epidermal growth factor (hEGF) and analyzed their impact on wound repair in a porcine wound-healing model. Full-thickness wounds were created on the backs of six Yorkshire pigs and covered with a wound chamber to create a wet wound-healing environment. ⋯ Wounds treated with hEGF-expressing allogenic keratinocytes reepithelialized faster than wounds treated with allogenic keratinocytes or control wounds. With a peak hEGF expression of 920.8 pg/mL, hEGF was detectable until day 5 after transplantation compared with minimal hEGF expression in control wounds. This study shows that allogenic keratinocytes can serve as efficient gene transfer vehicles for ex vivo growth factor delivery to full-thickness wounds and overexpression of hEGF further improves reepithelialization rates.