Der Anaesthesist
-
An interdisciplinary working group from the German Society of Hospital Hygiene (DGKH) and the German Society for Anesthesiology and Intensive Care (DGAI) worked out the following recommendations for infection prevention during anesthesia by using breathing system filters (BSF). The BSF shall be changed after each patient. The filter retention efficiency for airborne particles is recommended to be >99% (II). ⋯ In case of visible contamination e.g. by blood or in case of defect, it is required that the BSF and also the anesthesia breathing system is changed and the breathing gas conducting parts of the anesthesia ventilator are hygienically reprocessed. Observing of the appropriate hand disinfection is very important. All surfaces of the anesthesia equipment exposed to hand contact must be disinfected after each case.
-
In certain surgical positions standard cardiopulmonary resuscitation (CPR) cannot be carried out. It is sometimes impossible or time-consuming to establish a supine position without increasing the no-flow-time and therefore creating a negative outcome of the patient. ⋯ This was very effective because the return of spontaneous circulation (ROSC) started before turning the patient to the supine position. Resuscitation in the prone position in this case was equally as effective as in the traditional supine position.
-
Administer chest compressions (minimum 100/min, minimum 5 cm depth) at a ratio of 30:2 with ventilation (tidal volume 500-600 ml, inspiration time 1 s, F(I)O₂ if possible 1.0). Avoid any interruptions in chest compressions. After every single defibrillation attempt (initially biphasic 120-200 J, monophasic 360 J, subsequently with the respective highest energy), chest compressions are initiated again immediately for 2 min independent of the ECG rhythm. Tracheal intubation is the optimal method for securing the airway during resuscitation but should be performed only by experienced airway management providers. Laryngoscopy is performed during ongoing chest compressions; interruption of chest compressions for a maximum of 10 s to pass the tube through the vocal cords. Supraglottic airway devices are alternatives to tracheal intubation. Drug administration routes for adults and children: first choice i.v., second choice intraosseous (i.o.). Vasopressors: 1 mg epinephrine every 3-5 min i.v. After the third unsuccessful defibrillation amiodarone (300 mg i.v.), repetition (150 mg) possible. Sodium bicarbonate (50 ml 8.4%) only for excessive hyperkaliemia, metabolic acidosis, or intoxication with tricyclic antidepressants. Consider aminophylline (5 mg/kgBW). Thrombolysis during spontaneous circulation only for myocardial infarction or massive pulmonary embolism; during on-going cardiopulmonary resuscitation (CPR) only when indications of massive pulmonary embolism. Active compression-decompression (ACD-CPR) and inspiratory threshold valve (ITV-CPR) are not superior to good standard CPR. ⋯ Any CPR training is better than nothing; simplification of contents and processes is the main aim.
-
The new anaesthetic conserving device (ACD) allows the use of isoflurane and sevoflurane without classical anaesthesia workstations. Volatile anaesthetic exhaled by the patient is absorbed by a reflector and released to the patient during the next inspiration. Liquid anaesthetic is delivered via a syringe pump. ⋯ Inhalational sedation with isoflurane has been widely used for more than 20 years in many countries and even for periods of up to several weeks. In the German S3 guidelines for the management of analgesia, sedation and delirium in intensive care (Martin et al. 2010), inhalational sedation is mentioned as an alternative sedation method for patients ventilated via an endotracheal tube or a tracheal cannula. Nevertheless, isoflurane is not officially licensed for ICU sedation and its use is under the responsibility of the prescribing physician.