Human brain mapping
-
Human brain mapping · Dec 2012
Direct visualization of the subthalamic nucleus and its iron distribution using high-resolution susceptibility mapping.
Histological studies have shown a relatively high iron concentration in the subthalamic nucleus (STN). T2- and T2*-weighted sequences have previously been used to visualize the STN in vivo. The phase information of gradient-echo images reflects the magnetic tissue properties more directly, e.g., iron is more paramagnetic than water. ⋯ Their susceptibilities are quantitatively different (0.06 and 0.1 ppm for the STN and SN, respectively). These maps allowed the STN, SN, and the red nucleus to be manually segmented, thus providing 3D visualization of their boundaries. In sum, the STN can be more clearly distinguished from adjacent structures in susceptibility maps than in T2*-weighted images or phase images.
-
Human brain mapping · Dec 2012
The cerebral representation of temporomandibular joint occlusion and its alternation by occlusal splints.
Occlusal splints are a common and effective therapy for temporomandibular joint disorder. Latest hypotheses on the impact of occlusal splints suggest an altered cerebral control on the occlusion movements after using a splint. However, the impact of using a splint during chewing on its cerebral representation is quite unknown. ⋯ An additionally applied individually based evaluation of representation sites in regions of interest demonstrated that the somatotopic representation for both conditions in the pre- and postcentral gyri did not significantly differ. Furthermore, this analysis confirmed the decreasing effect of the splint on bilateral primary and secondary motor and somatosensory cortical activation. In contrast to the decreasing effect on sensorimotor areas, an increased level of activity in the fronto-parieto-occipital and cerebellar network might be associated with the therapeutic effect of occlusal splints.
-
Human brain mapping · Dec 2012
Seeing touch and pain in a stranger modulates the cortical responses elicited by somatosensory but not auditory stimulation.
Viewing other's pain inhibits the excitability of the motor cortex and also modulates the neural activity elicited by a concomitantly delivered nociceptive somatosensory stimulus. As the neural activity elicited by a transient nociceptive stimulus largely reflects non nociceptive-specific, multimodal neural processes, here we tested, for the first time, whether the observation of other's pain preferentially affects the brain responses elicited by nociceptive stimulation, or instead similarly modulates those elicited by stimuli belonging to a different sensory modality. Using 58-channel electroencephalography (EEG), we recorded the cortical responses elicited by laser and auditory stimulation during the observation of videoclips showing either noxious or non-noxious stimulation of a stranger's hand. ⋯ Using three different source analysis approaches, we provide converging evidence that such modulation affected neural activity in the contralateral primary sensorimotor cortex. The magnitude of this modulation correlated well with a subjective measure of similarity between the model's hand and the onlooker's representation of the hand. Altogether, these findings demonstrate that the observation of other's pain modulates, in a somatosensory-specific fashion, the cortical responses elicited by nociceptive stimuli in the sensorimotor cortex contralateral to the stimulated hand.
-
Human brain mapping · Dec 2012
The effect of hypointense white matter lesions on automated gray matter segmentation in multiple sclerosis.
Previous imaging studies assessing the relationship between white matter (WM) damage and matter (GM) atrophy have raised the concern that Multiple Sclerosis (MS) WM lesions may affect measures of GM volume by inducing voxel misclassification during intensity-based tissue segmentation. Here, we quantified this misclassification error in simulated and real MS brains using a lesion-filling method. Using this method, we also corrected GM measures in patients before comparing them with controls in order to assess the impact of this lesion-induced misclassification error in clinical studies. ⋯ Our results confirm that WM lesions can influence MRI measures of GM volume and shape in MS patients through their effect on intensity-based GM segmentation. The greater effect of lesions at increasing levels of damage supports the use of lesion-filling to correct for this problem and improve the interpretability of the results. Volumetric or morphometric imaging studies, where lesion amount and characteristics may vary between groups of patients or change over time, may especially benefit from this correction.