Human brain mapping
-
Human brain mapping · Jan 2013
Neural correlates of tinnitus duration and distress: a positron emission tomography study.
Cerebral (18)F-deoxyglucose positron emission tomography (FDG-PET) has shown altered auditory pathway activity in tinnitus. However, the corresponding studies involved only small samples and analyses were restricted to the auditory cortex in most studies. Evidence is growing that also limbic, frontal, and parietal areas are involved in the pathophysiology of chronic tinnitus. ⋯ Tinnitus duration and distress were associated with areas involved in attentional and emotional processing. This is in line with recent findings indicating the relevance of higher order areas in the pathophysiology of tinnitus. Earlier results of asymmetric activation of the auditory cortices in tinnitus were confirmed, i.e., left-sided overactivation was found independently from tinnitus laterality.
-
Human brain mapping · Jan 2013
Meta AnalysisLocalization of pain-related brain activation: a meta-analysis of neuroimaging data.
A meta-analysis of 140 neuroimaging studies was performed using the activation-likelihood-estimate (ALE) method to explore the location and extent of activation in the brain in response to noxious stimuli in healthy volunteers. The first analysis involved the creation of a likelihood map illustrating brain activation common across studies using noxious stimuli. The left thalamus, right anterior cingulate cortex (ACC), bilateral anterior insulae, and left dorsal posterior insula had the highest likelihood of being activated. ⋯ The fourth analysis tested for a hemispheric dominance in pain processing and showed the importance of the right hemisphere, with the strongest ALE peaks and clusters found in the right insula and ACC. The fifth analysis compared noxious muscle with cutaneous stimuli and the former type was more likely to evoke activation in the posterior and anterior cingulate cortices, precuneus, dorsolateral prefrontal cortex, and cerebellum. In general, results indicate that some brain regions such as the thalamus, insula and ACC have a significant likelihood of activation regardless of the type of noxious stimuli, while other brain regions show a stimulus-specific likelihood of being activated.