Human brain mapping
-
Human brain mapping · Oct 2020
In vivo hippocampal subfield volumes in bipolar disorder-A mega-analysis from The Enhancing Neuro Imaging Genetics through Meta-Analysis Bipolar Disorder Working Group.
The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta-Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1-weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. ⋯ Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD.
-
Human brain mapping · Oct 2020
Loss of frontal regulator of vigilance during sleep inertia: A simultaneous EEG-fMRI study.
Sleep inertia refers to a distinct physiological state of waking up from sleep accompanied by performance impairments and sleepiness. The neural substrates of sleep inertia are unknown, but growing evidence suggests that this inertia state maintains certain sleep features. To investigate the neurophysiological mechanisms of sleep inertia, a comparison of pre-sleep and post-sleep wakefulness with eyes-open resting-state was performed using simultaneous EEG-fMRI, which has the potential to reveal the dynamic details of neuroelectric and hemodynamic responses with high temporal resolution. ⋯ A time course analysis confirmed a decreased correlation between EEG vigilance and the FPN activity during sleep inertia. This simultaneous EEG-fMRI study advanced our understanding of sleep inertia and revealed the importance of the FPN in maintaining awareness. This is the first study to reveal the dynamic brain network changes from multi-modalities perspective during sleep inertia.