Human brain mapping
-
Human brain mapping · Nov 2021
ReviewNeural mapping of prepulse-induced startle reflex modulation as indices of sensory information processing in healthy and clinical populations: A systematic review.
Startle reflex is modulated when a weaker sensory stimulus ("prepulse") precedes a startling stimulus ("pulse"). Prepulse Inhibition (PPI) is the attenuation of the startle reflex (prepulse precedes pulse by 30-500 ms), whereas Prepulse Facilitation (PPF) is the enhancement of the startle reflex (prepulse precedes pulse by 500-6000 ms). ⋯ One study revealed a shared network for PPI and PPF in frontal regions and cerebellum, with PPF networks recruiting superior medial gyrus and cingulate cortex. The main gaps in the literature are (i) limited PPF research and whether PPI and PPF operate on separate/shared networks, (ii) no data on sex differences in neural underpinnings of PPI and PPF, and (iii) no data on neural underpinnings of PPI and PPF in other clinical disorders.
-
Human brain mapping · May 2021
Variability of white matter anatomy in the subcallosal cingulate area.
The subcallosal cingulate (SCC) area is a putative hub in the brain network underlying depression. Deep brain stimulation (DBS) targeting a particular subregion of SCC, identified as the intersection of forceps minor (FM), uncinate fasciculus (UCF), cingulum and fronto-striatal fiber bundles, may be critical to a therapeutic response in patients with severe, treatment-resistant forms of major depressive disorder (MDD). The pattern and variability of the white matter anatomy and organization within SCC has not been extensively characterized across individuals. ⋯ Anatomically defined SCC regions were used as seeds to perform probabilistic tractography and to estimate the connectivity from the SCC to subject-specific target areas believed to be involved in the pathology of MDD including ventral striatum (VS), UCF, anterior cingulate cortex (ACC), and medial prefrontal cortex (mPFC). Four distinct areas of connectivity were identified within SCC across subjects: (a) postero-lateral SCC connectivity to medial temporal regions via UCF, (b) postero-medial connectivity to VS, (c) superior-medial connectivity to ACC via cingulum bundle, and (d) antero-lateral connectivity to mPFC regions via forceps minor. Assuming white matter connectivity is critical to therapeutic response, the improved anatomic understanding of SCC as well as an appreciation of the intersubject variability are critical to developing optimized therapeutic targeting for SCC DBS.
-
Human brain mapping · Oct 2020
In vivo hippocampal subfield volumes in bipolar disorder-A mega-analysis from The Enhancing Neuro Imaging Genetics through Meta-Analysis Bipolar Disorder Working Group.
The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta-Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1-weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. ⋯ Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD.
-
Human brain mapping · Oct 2020
Loss of frontal regulator of vigilance during sleep inertia: A simultaneous EEG-fMRI study.
Sleep inertia refers to a distinct physiological state of waking up from sleep accompanied by performance impairments and sleepiness. The neural substrates of sleep inertia are unknown, but growing evidence suggests that this inertia state maintains certain sleep features. To investigate the neurophysiological mechanisms of sleep inertia, a comparison of pre-sleep and post-sleep wakefulness with eyes-open resting-state was performed using simultaneous EEG-fMRI, which has the potential to reveal the dynamic details of neuroelectric and hemodynamic responses with high temporal resolution. ⋯ A time course analysis confirmed a decreased correlation between EEG vigilance and the FPN activity during sleep inertia. This simultaneous EEG-fMRI study advanced our understanding of sleep inertia and revealed the importance of the FPN in maintaining awareness. This is the first study to reveal the dynamic brain network changes from multi-modalities perspective during sleep inertia.
-
Human brain mapping · Aug 2020
Language lateralization from task-based and resting state functional MRI in patients with epilepsy.
We compared resting state (RS) functional connectivity and task-based fMRI to lateralize language dominance in 30 epilepsy patients (mean age = 33; SD = 11; 12 female), a measure used for presurgical planning. Language laterality index (LI) was calculated from task fMRI in frontal, temporal, and frontal + temporal regional masks using LI bootstrap method from SPM12. RS language LI was assessed using two novel methods of calculating RS language LI from bilateral Broca's area seed based connectivity maps across regional masks and multiple thresholds (p < .05, p < .01, p < .001, top 10% connections). ⋯ Early seizure onset (<6 years old) was not associated with atypical language dominance during task-based or RS fMRI. While a relationship between task LI and RS LI exists in patients with epilepsy, language dominance is less lateralized on RS than task fMRI. Concordance of language dominance classifications between task and resting state fMRI depends on brain regions surveyed and RS LI calculation method.