Gene therapy
-
We examined whether replication-defective herpes simplex virus (HSV) vectors encoding the 67 kDa form of the glutamic acid decarboxylase (GAD(67)) gene product, the gamma-aminobutyric acid (GABA) synthesis enzyme, can suppress detrusor overactivity (DO) in rats with spinal cord injury (SCI). One week after spinalization, HSV vectors expressing GAD and green fluorescent protein (GFP) (HSV-GAD) were injected into the bladder wall. Rats with SCI without HSV injection (HSV-untreated) and those injected with lacZ-encoding reporter gene HSV vectors (HSV-LacZ) were used as controls. ⋯ In the HSV-GAD group, GAD(67) mRNA and protein levels were significantly increased in the L6-S1 dorsal root ganglia (DRG) compared with the HSV-LacZ group, while 57% of DRG cells were GFP-positive, and these neurons showed increased GAD(67)-like immunoreactivity compared with the HSV-LacZ group. These results indicate that GAD gene therapy effectively suppresses DO after SCI predominantly through the activation of spinal GABA(A) receptors. Thus, HSV-based GAD gene transfer to bladder afferent pathways may represent a novel approach for treatment of neurogenic DO.