Gene therapy
-
Review
The importance of international collaboration for rare diseases research: a European perspective.
Over the last two decades, important contributions were made at national, European and international levels to foster collaboration into rare diseases research. The European Union (EU) has put much effort into funding rare diseases research, encouraging national funding organizations to collaborate together in the E-Rare program, setting up European Reference Networks for rare diseases and complex conditions, and initiating the International Rare Diseases Research Consortium (IRDiRC) together with the National Institutes of Health in the USA. ⋯ Several examples of funded pre-clinical and clinical gene therapy projects show that integration of multinational and multidisciplinary expertize generates new knowledge and can result in multicentre gene therapy trials. International collaboration in rare diseases research is key to improve the life of people living with a rare disease.
-
Spinal muscular atrophy (SMA), a prominent genetic disease of infant mortality, is caused by low levels of survival motor neuron (SMN) protein owing to deletions or mutations of the SMN1 gene. SMN2, a nearly identical copy of SMN1 present in humans, cannot compensate for the loss of SMN1 because of predominant skipping of exon 7 during pre-mRNA splicing. With the recent US Food and Drug Administration approval of nusinersen (Spinraza), the potential for correction of SMN2 exon 7 splicing as an SMA therapy has been affirmed. ⋯ Here, we provide a historical account of events that led to the discovery of ISS-N1 and describe the impact of independent validations that raised the profile of ISS-N1 as one of the most potent antisense targets for the treatment of a genetic disease. Recent approval of nusinersen provides a much-needed boost for antisense technology that is just beginning to realize its potential. Beyond treating SMA, the ISS-N1 target offers myriad potentials for perfecting various aspects of the nucleic-acid-based technology for the amelioration of the countless number of pathological conditions.