Gene therapy
-
The superoxide dismutase 1 (SOD1) mutation is one of the most notable causes of amyotrophic lateral sclerosis (ALS), and modifying the mutant SOD1 gene is the best approach for the treatment of patients with ALS linked to the mutations in this gene. Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas9)/sgRNA delivered by the adeno-associated virus (AAV) system is a powerful tool for genome editing in the central nervous system (CNS). Here, we tested the capacity of the AAV-SaCas9-sgRNA system to modify mutant SOD1 in SOD1G93A transgenic mice and found that AAV9-SaCas9-sgRNA5 deleted the SOD1 gene, improved the lifespan of SOD1G93A mice by 54.6%, and notably ameliorated the performance of ALS transgenic mice. ⋯ Consequently, the area showing muscle atrophy was more notably restored in the group treated with SaCas9-sgRNA5 compared with the group treated with SaCas9-sgLacZ. In addition, deep sequencing did not show the indel mutation in the gene highly matched to sgRNA5. Hence, AAV9-SaCas9-sgRNA-based gene editing is a feasible potential treatment for patients with ALS linked to SOD1 mutations.