Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Diaspirin Cross-linked Hemoglobin (DCLHb), a hemoglobin-based oxygen carrier, improves regional blood circulation and systemic hemodynamics in normal and hemorrhaged rats. The action of DCLHb is partly mediated by its scavenging effect on nitric oxide. This study was undertaken to determine the effect of DCLHb on nitric oxide mechanism in hemorrhagic conditions. ⋯ L-arginine pretreatment did not affect DCLHb-induced resuscitation of hemorrhaged rats. Furthermore, L-NAME (pretreated or co-administered) attenuated the resuscitative effect of DCLHb. These data suggest that nitric oxide mechanism may not be the only mechanism involved in the resuscitative effect of DCLHb.
-
Hypertonic saline (HS) resuscitation after hemorrhage and sepsis has been shown to markedly reduce the development of lung injury in animals, compared with traditional resuscitation with lactated Ringer's (LR). These experiments examined the effect of HS on lung injury after hemorrhage without sepsis. The effects of HS and LR resuscitation on neutrophil trafficking, neutrophil adhesion, and neutrophil oxidative burst were studied. ⋯ HS animals had less lung injury than LR animals. The mean myeloperoxidase activity in HS versus LR animals was 1.79+/-1.33 U/100 mg versus 3.0+/-1.33 U/100 mg, respectively. The percentage of neutrophils in the bronchoalveolar lavage fluid of HS animals (3.8%+/-.8) was significantly less than that of LR animals (10.8%+/-2.1). This corresponded to a significantly higher peripheral blood neutrophil count in HS animals compared with LR animals, 41% vs. 20%, respectively. There was no difference in neutrophil expression of the CD11b integrin between the HS and LR groups. The neutrophils of LR animals had basal H2O2 production that was 107% greater than that of controls; HS suppressed this hemorrhage-induced activation by > 60%. HS resuscitation after hemorrhagic shock protects against the development of lung injury. This protection is due, in part, to suppression of the hemorrhage-induced neutrophil oxidative burst. HS resuscitation offers immunomodulatory potential after hemorrhagic shock.