Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
We conducted this study to elucidate the role of endothelins (ET-1) in mediating the hepatic microcirculatory dysfunction observed in response to sepsis. Following 24 h of cecal ligation and puncture (CLP), we performed intravital microscopy both in vivo and on isolated perfused livers. Portal resistance increased in response to ET-1 in both sham and septic rats, with no significant difference between the two in either in vivo or in isolated livers. ⋯ Taken together, these results suggest that sepsis sensitizes the hepatic microcirculation to ET-1. More importantly, an impaired microcirculatory flow due to ET-1 in sepsis contributes to hepatic injury. Further, localized imbalances between endothelins and NO may mediate the altered microvascular response during sepsis.
-
The neuroproteins S-100B and neuron-specific enolase (NSE) released into the circulation are suggested to be reliable markers for primary brain damage. However, safe identification of relevant post-traumatic complications after minor head injury (MHI) is often hampered by acute intoxication of the patients. The objective of this study was to determine the diagnostic validity of immediate plasma measurements of S-100B and NSE in comparison with neurological examinations and cerebral computed tomography (CCT) findings in alcohol-intoxicated MHI patients. ⋯ As calculated by the ROC analysis, a cutoff value of 0.21 ng/mL with an area under the curve of 0.864 clearly differentiates between CCT+ and CCT- patients at a sensitivity of 100%, a specificity of 50.0%, and a positive likelihood ratio of 2.0. Although acute alcohol intoxication did not confound plasma measurements of S-100B and NSE, only S-100B levels below the cutoff level of 0.21 ng/mL seem to indicate absence of primary brain damage. Thus, in addition to routine neurological examinations, S-100B measurements immediately after admission might help to reduce CCT scans in alcohol-intoxicated patients early after MHI.
-
Reduction of neutrophil apoptosis represents a major cause for granulocytosis and increases the destructive potential of theses cells during systemic inflammatory response syndrome (SIRS) and sepsis. In this light, the role of protein kinases for the regulation of altered neutrophil apoptosis under infectious conditions was investigated. Neutrophils, obtained from patients with severe sepsis (n = 18), were incubated ex vivowith either LPS (1 microg/mL) or interferon-gamma (IFN-gamma; 10 ng/mL) for 16 h. ⋯ Western blot analysis revealed phosphorylation of both MAP kinases by LPS, but not by IFN-gamma. Inhibition of MAP kinases did not augment neutrophil apoptosis in patients to the level seen in controls, indicating that other mechanisms must be involved in the regulation of neutrophil apoptosis. Although the ERK kinase regulates LPS-induced reduction of apoptosis, the p38 MAP kinase might be involved in IFN-gamma signaling and the feedback regulation of neutrophil apoptosis.
-
Dehydroepiandrosterone (DHEA) exerts a variety of positive effects on the immunologic alterations after trauma and sepsis. We therefore measured the therapeutic efficacy of DHEA after cecal ligation and puncture (CLP) on the expression of lymphocyte subpopulations and on the delayed type hypersensitivity (DTH) reaction. Male NMRI-mice were randomly assigned to four different treatment groups. ⋯ DHEA treatment after CLP was associated with fewer alterations in the changes of CD8+ and CD56, cells, and the DTH reaction compared with animals submitted to CLP without any treatment. This difference was associated with improved outcome (reactivity, mortality). These results suggest a modulation at specific immune reactions by DHEA treatment.
-
Editorial Comment
Brain specific proteins in serum: do they reliably reflect brain damage?