Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
In our previous study of patients with early-phase severe traumatic brain injury (TBI), the anti-inflammatory interleukin (IL)-10 concentration was lower in cerebrospinal fluid (CSF) than in serum, whereas proinflammatory IL-1beta and tumor necrosis factor (TNF)-alpha concentrations were higher in CSF than in serum. To clarify the influence of additional injury on this disproportion between proinflammatory and anti-inflammatory mediators, we compared their CSF and serum concentrations in patients with severe TBI with and without additional injury. All 35 study patients (18 with and 17 without additional injury) had a Glasgow Coma Scale score of 8 or less upon admission. ⋯ CSF concentrations of IL-1beta, IL-1ra, sTNFr-I, and IL-10 were significantly higher (P < 0.01 for all) in patients with high intracranial pressure (ICP; n = 11) than in patients with low ICP (n = 24), and were also significantly higher (P < 0.05 for all) in patients with an unfavorable outcome (n = 14) than in patients with a favorable outcome (n = 21). These findings indicate that increased serum concentrations of anti-inflammatory mediators after severe TBI are mainly due to additional extracranial injury. We conclude that anti-inflammatory mediators in CSF may be useful indicators of the severity of brain damage in terms of ICP as well as overall prognosis of patients with severe TBI.
-
We examined the modifying effects of a Kunitz trypsin inhibitor (KTI) and a Bowman-Birk trypsin inhibitor (BBI), purified from soybean, as intraperitoneal (i.p.) injection and dietary supplements on bacterial lipopolysaccharide (LPS)-induced lethality in mice. We initially examined the suppressing effects of i.p. injection of KTI (50 mg/kg) and BBI (50 mg/kg) on LPS-induced lethality after i.p. injection of LPS. ⋯ Here, we show that i.p. and daily oral administration of KTI, but not BBI, caused a significant reduction of the LPS-induced lethality; that LPS significantly induced plasma TNF-alpha, IL-1beta, and IL-6 levels in mice after LPS challenge; that concomitant administration of KTI, but not BBI, inhibits the LPS-induced plasma levels of these cytokines; and that KTI, but not BBI, suppressed LPS-induced upregulation of cytokine expression through suppression of phosphorylation of three mitogen-activated protein (MAP) kinase pathways, ERK1/2, JNK, and p38, in peritoneal macrophages. These data allow us to speculate that i.p. injection and dietary supplementation of a soybean KTI may play a role as a potent anti-inflammatory agent by inhibiting activation of MAP kinases, leading to the suppression of cytokine expression.
-
Randomized Controlled Trial Multicenter Study Clinical Trial
A pilot-controlled study of a polymyxin B-immobilized hemoperfusion cartridge in patients with severe sepsis secondary to intra-abdominal infection.
Endotoxin is an important pathogenic trigger for sepsis. The polymyxin B-immobilized endotoxin removal hemoperfusion cartridge, Toraymyxin (hereafter PMX), has been shown to remove endotoxin in preclinical and open-label clinical studies. In a multicenter, open-label, pilot, randomized, controlled study conducted in the intensive care unit in six academic medical centers in Europe, 36 postsurgical patients with severe sepsis or septic shock secondary to intra-abdominal infection were randomized to PMX treatment of 2 h (n = 17) or standard therapy (n = 19). ⋯ There was no significant difference between the groups in organ dysfunction as assessed by the Sequential Organ Failure Assessment (SOFA) scores from day 0 (baseline) to day 6. Treatment using the PMX cartridge is safe and may improve cardiac and renal dysfunction due to sepsis or septic shock. Further studies are needed to prove this effectiveness.
-
It has been proposed that factors originating from the gut after severe trauma/shock are introduced into the systemic circulation through the mesenteric lymphatics and are responsible for the cellular injury and inflammation that culminates in acute multiple organ dysfunction syndrome (MODS). Indeed, it has been shown that lymph collected from shocked but not sham-shocked animals causes endothelial cell death, neutrophil activation, and bone marrow (BM) colony growth suppression in vitro. In an attempt to isolate the factor(s) in lymph responsible for endothelial cell toxicity, lymph from shock and sham animals was fractionated by solid phase extraction (SPE) and ion exchange chromatography (IEX). ⋯ Subsequent analysis of each SPE toxic fraction by gel electrophoresis and mass spectrometry suggests the toxicity is associated with a modified form of rat serum albumin (mod-RSA) and multiple lipid-based factors. Therefore, we have been able to demonstrate by two different separation techniques that shock lymph contains two or more factors that may account for the toxicity to endothelial cells. Further investigations are needed to determine the type of RSA modification and the identity of the lipid factors and their role in MODS.