Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
In awake spontaneously breathing mice, inhaling gaseous hydrogen sulfide (H2S) produced a "suspended animation-like" metabolic status with hypothermia and reduced O2 demand, thus protecting from lethal hypoxia. Murine models may be questioned, however, because due to their large surface area/mass ratio, rodents can rapidly drop their core temperature. Therefore, we investigated whether intravenous H2S (Na2S, sodium sulfide) would induce a comparable metabolic response in anesthetized and mechanically ventilated pigs. ⋯ The parameters of inflammation and oxidative stress did not differ. Intravenous sulfide allowed reducing energy expenditure in an anesthetized large-animal model and improved the noradrenaline responsiveness during reperfusion after aortic occlusion. Investigations are warranted, hence, whether it may also protect other organs after I/R injury.
-
Severe sepsis and septic shock have long been a challenge in intensive care because of their common occurrence, high associated costs of care, and significant mortality. The Surviving Sepsis Campaign (SSC) was developed in an attempt to address clinical inertia in the adoption of evidence-based strategies. The campaign relies on worldwide support from professional societies and has gained consensus on the management of patients with severe sepsis. ⋯ The idea of the campaign is based on a 25% reduction in the relative risk of death from severe sepsis and septic shock within 5 years in the SSC-participating Brazilian hospitals. Ideally, the mortality rate should come to a 41.2% level subject to the 2009 deadline. This article aims to describe the actual scenario of the SSC implementation in Brazilian institutions and to report on some initiatives that have been used to overcome barriers.
-
Neutrophils are key effectors of the innate immune response. Reduction of neutrophil migration to infection sites is associated with a poor outcome in sepsis. We have demonstrated a failure of neutrophil migration in lethal sepsis. ⋯ These events culminate in decreased endothelium-leukocyte interactions, diminished neutrophil chemotactic response, and neutrophil migration failure. Additionally, the NO effect, at least in part, is mediated by peroxynitrite. In this review, we summarize what is known regarding the mechanisms of neutrophil migration impairment in severe sepsis.
-
The pathogenesis of sepsis involves complex interaction between the host and the infecting microorganism. Bacterial recognition and signaling are essential functions of the cells of innate immune systems and drive a coordinated immune response. One of the more intriguing aspects of sepsis is the fact that the protective and damaging host response are part of the same process, that is, the inflammatory response that is aimed to control the infectious process also underscores many of the pathophysiological events of sepsis. ⋯ The results obtained by our group show that TLR and other cellular surface receptors may be differently regulated on mononuclear cells and neutrophils, and that they are dynamically modulated across the stages of sepsis. Toll-like receptor signaling gene expression in mononuclear cells is decreased in more severe forms of the disease. In contrast, up-regulated genes are seen along the clinical spectrum of sepsis in neutrophils.
-
Editorial Review
Impact of antimicrobial resistance on the treatment and outcome of patients with sepsis.
Antimicrobial therapy is one of the main stones of sepsis therapy. A recent study of septic shock patients showed that each hour of delay in antimicrobial administration during the ensuing 6 h after the onset of hypotension was associated with a decrease in survival rates. However, many questions regarding the impact of infection caused by antimicrobial-resistant pathogens on the mortality of patients with sepsis still need to be clarified. ⋯ Most studies have had inadequate sample size, inadequate adjustment for predictors of adverse outcomes, and inadequate definition of appropriate antibiotic therapy. Despite the fact that appropriate therapy is essential to treat sepsis, it seems that severity of underlying diseases and comorbidities are more important than resistance, although the studies were not well designed to examine the real impact of resistance on outcome. Finally, new technologies such as microarray that can identify different microorganisms, genes of resistance, and virulence in a few hours might have a great impact on the treatment of sepsis due to antimicrobial-resistant pathogens in the future.