Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
The pathogenesis of sepsis involves complex interaction between the host and the infecting microorganism. Bacterial recognition and signaling are essential functions of the cells of innate immune systems and drive a coordinated immune response. One of the more intriguing aspects of sepsis is the fact that the protective and damaging host response are part of the same process, that is, the inflammatory response that is aimed to control the infectious process also underscores many of the pathophysiological events of sepsis. ⋯ The results obtained by our group show that TLR and other cellular surface receptors may be differently regulated on mononuclear cells and neutrophils, and that they are dynamically modulated across the stages of sepsis. Toll-like receptor signaling gene expression in mononuclear cells is decreased in more severe forms of the disease. In contrast, up-regulated genes are seen along the clinical spectrum of sepsis in neutrophils.
-
The release of "neutrophil extracellular traps" (NETs) has been identified as a novel immune response in innate immunity. Neutrophil extracellular traps are composed of neutrophil-derived circulating free DNA (cf-DNA), histones, and neutrophil cytoplasm-derived proteins such as proteases. Here, we studied the putative predictive value of plasma cf-DNA/NETs for the development of sepsis and mortality after multiple trauma. ⋯ Circulating free DNA/NETs kinetics rather followed kinetics of Multiple Organ Dysfunction Score, Sepsis-related Organ Failure Assessment, leukocyte counts, and partially of myeloperoxidase. Circulating free DNA/NETs seems to be a valuable additional marker for the calculation of injury severity and/or prediction of inflammatory second hit on ICU. However, a large clinical trial with severely injured patients should confirm the prognostic value of neutrophil-derived cf-DNA/NETs.
-
A promising therapeutic strategy for the management of severe Pseudomonas infection in neutropenic patients may result from the coadministration of colony-stimulating factors (CSFs) that help maintain immune competence and antimicrobial peptides, a novel generation of adjunctive therapeutic agents with antimicrobial and anti-inflammatory properties. A promising peptide with these properties is LL-37, the only member of the cathelicidin family of antimicrobial peptides found in humans. BALB/c male mice were rendered neutropenic by intraperitoneal administration of cyclophosphamide on days -4 and -2 preinfection. ⋯ All regimens were significantly superior to controls at reducing the mouse lethality rate and bacterial burden in organs. Particularly, the combination between LL-37 and G-CSF was the most effective in protecting neutropenic mice from the onset of sepsis and in vitro significantly reduced the apoptosis of neutrophils. Combination therapy between LL-37 and G-CSF is a promising therapeutic strategy for the management of severe Pseudomonas infection complicated by neutropenia.
-
Burn injury has been associated with systemic/compartmental inflammatory responses and myocardial dysfunction. We hypothesized that burn size correlates with the extent of cardiac inflammatory response/contractile dysfunction. Adult male Sprague-Dawley rats were divided to receive anesthesia, a 3-degree burn covering 20%, 30%, 40%, or 60% total body surface area (TBSA) plus fluid resuscitation (lactated Ringer, 4 mL/kg per percent burn); sham burn animals were included as controls. ⋯ However, myocardial contractile depression induced by 60% TBSA burn was similar to that produced by 40% TBSA burn. These data suggest that the degree of inflammatory response, cardiac tissue injury, and myocardial contractile depression were correlated directly with the percent TBSA burn. However, unlike inflammation and cardiac tissue damage, myocardial contractile depression reached a plateau, with maximal myocardial contraction and relaxation defects observed at 40% TBSA burn, which were not further aggravated by a larger (60%) burn.
-
Editorial Review
Arterial pulse pressure variation predicting fluid responsiveness in critically ill patients.
In critically ill patients, it is important to predict which patients will have their systemic blood flow increased in response to volume expansion to avoid undesired hypovolemia and fluid overloading. Static parameters such as the central venous pressure, the pulmonary arterial occlusion pressure, and the left ventricular end-diastolic dimension cannot accurately discriminate between responders and nonresponders to a fluid challenge. In this regard, respiratory-induced changes in arterial pulse pressure have been demonstrated to accurately predict preload responsiveness in mechanically ventilated patients. Some experimental and clinical studies confirm the usefulness of arterial pulse pressure as a useful tool to guide fluid therapy in critically ill patients.