Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
The reduction of neutrophil migration to an infectious focus is associated with a high mortality in severe sepsis. Previously, we showed that heme oxygenase (HO) products downregulate neutrophil recruitment in a noninfectious inflammatory model. The present study was designed to determine the role of HO in sepsis induced by cecal ligation and puncture (CLP) model. ⋯ Furthermore, hemin resulted in a reduction of neutrophil migration both in vivo and in vitro. Altogether, our results demonstrated that pretreatment with the HO inhibitor prevents the pathological findings in severe CLP. However, the combination of pretreatment plus posttreatment with ZnPP IX enhances sepsis severity because of an increase in circulating levels of heme, which is deleterious to the host tissues and also inhibits neutrophil migration.
-
Neutrophil infiltration is an insidious feature in septic lung injury, although the specific adhesive mechanisms regulating pulmonary recruitment of neutrophils in polymicrobial sepsis remain elusive. The aim of this present study was to define the role of CD44 in sepsis-induced neutrophil infiltration and lung damage. Mice were treated with a monoclonal antibody against CD44 before cecal ligation and puncture (CLP) induction. ⋯ Moreover, administration of hyaluronidase had no effect on CLP-induced neutrophil recruitment and tissue damage in the lung. Our data demonstrate that CD44 contributes to pulmonary infiltration of neutrophils and lung damage associated with abdominal sepsis. Thus, these novel findings suggest that CD44 may serve as a target to protect against lung injury in polymicrobial sepsis.
-
Several mitogen-activated protein kinases (MAPKs) are activated during thermal injury, and the p38 MAPK is specifically involved in endothelial cell (EC) actin and myosin rearrangement (stress-fiber formation) with ensuing cellular contraction and enhanced vessel permeability. Inhibition of p38 MAPK and extracellular signal-related kinase MAPK by their inhibitors SB203580 and PD98059, respectively, significantly reduces burn serum-induced EC stress-fiber formation, whereas SB203580 also inhibits burn serum-induced EC tight-junction damage and thereby general blood vessel hyperpermeability. The JNK MAPK inhibitor, SP600125, on the contrary, influences neither stress-fiber formation nor EC tight-junction damage. ⋯ Western blotting, real-time reverse transcriptase-polymerase chain reaction, and confocal laser scanning microscopy proved that SP600125 significantly inhibits burn serum-induced intercellular adhesion molecule 1 expression, whereas SB203580 depresses the expression of P selectin. In vivo studies, using the dominant negative adenoviral approach of MAPK kinase 3b and MAPK kinase 6b to block p38 MAPKs, and MKK4 and MKK7 to block JNK MAPKs, show that the latter MAPKs are involved in the regulation of P selectin and intercellular adhesion molecule 1 expression, respectively, following thermal injury. Taken together, the results suggest that several MAPKs play important, although different, roles in general EC alterations following burn injuries.
-
Most experimental studies on hemorrhage and trauma are performed under anesthesia. We determined the effects of three commonly used anesthetic regimens on hemodynamics and organ damage under normal and hemorrhagic/traumatic shock (HTS) conditions in rats. Animals were anesthetized with ketamine/diazepam (K/D), ketamine/xylazine (K/X), or isoflurane (ISO). ⋯ Histological examinations revealed frequent HTS-induced damage to adrenals, kidney, and liver of animals anesthetized with K/D and K/X but not with ISO. Anesthetics differentially affect HTS-induced hemodynamic alterations and organ injury. Thus, when interpreting data from HTS models, the individual effect of anesthetics should be considered.
-
Different isoforms of nitric oxide (NO) synthase are critically involved in the development of pulmonary failure secondary to acute lung injury. Here we tested the hypothesis that simultaneous blockade of inducible and neuronal NO synthase effectively prevents the pulmonary lesions in an ovine model of acute respiratory distress syndrome induced by combined burn and smoke inhalation injury. Chronically instrumented sheep were allocated to a sham-injured group (n = 6), an injured and untreated group (n = 6), or an injured group treated with simultaneous infusion of selective inducible and neuronal NO synthase inhibitors (n = 5). ⋯ The treatment fully prevented the elevations in lymph and plasma nitrate/nitrite levels, pulmonary shunting, ventilatory pressures, lung lymph flow, and wet/dry weight ratio and significantly attenuated the decline in PaO2/FiO2 ratio. In conclusion, simultaneous blockade of inducible and neuronal NO synthase exerts beneficial pulmonary effects in an ovine model of acute respiratory distress syndrome secondary to combined burn and smoke inhalation injury. This novel treatment strategy may represent a useful therapeutic adjunct for patients with these injuries.