Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Clinical Trial
Modifications in erythrocyte membrane protein content are not responsible for the alterations in rheology seen in sepsis.
Red blood cell (RBC) rheology is altered in sepsis and may contribute to the microcirculatory alterations in these patients, but the mechanisms of these changes are not well defined. An increase in the RBC protein band 3/α-spectrin ratio has been observed in a mouse model of septic shock, suggesting a possible alteration in the RBC membrane integral/peripheral protein ratio. This protein modification could contribute to the alterations in RBC rheology observed in sepsis. ⋯ The majority of RBC membrane protein ratios, including band 3/spectrin, were more elevated in critically ill patients (nonseptic and septic) than in volunteers, but RBC membrane skeletal protein content was similar in septic and nonseptic patients. There were no significant differences in cryohemolysis results among groups. Alterations in RBC rheology in sepsis are therefore mainly due to alterations in membrane compounds other than skeletal proteins, like carbohydrates, such as sialic acid and/or lipids.
-
Review Comparative Study
Comparison of mortality associated with sepsis in the burn, trauma, and general intensive care unit patient: a systematic review of the literature.
The purpose of this systematic review of the literature was to determine the association of sepsis with mortality in the severely injured adult patient by means of a comparative analysis of sepsis in burn and trauma injury with other critically ill populations. The MEDLINE (PubMed), Cochrane Library, and ProQuest databases were searched. The following keywords and MeSH headings were used: "sepsis," septicemia," "septic shock," "epidemiology," "burns," "thermal injury," "trauma," "wounds and injuries," "critical care," "intensive care," "outcomes," and "mortality." Included studies were clinical studies of adult burn, trauma, and critically ill patients that reported survival data for sepsis. ⋯ This study is the first to compare sepsis outcomes in three distinct patient populations: burn, trauma, and general critical care. Trauma patients tend to have relatively low sepsis-associated mortality; burn patients and the older critical care population have higher prevalence of sepsis with worse outcomes. Great variability of criteria to identify septic patients among studies compromises population comparisons.
-
Renal ischemia/reperfusion (I/R) injury is a major clinical problem where main metabolic pathways are compromised and cellular homeostasis crashes after ATP depletion. Fatty acids are major energy source in the kidneys. Carnitine palmitoyltransferase I (CPT1), a mitochondrial membrane enzyme, utilizes carnitine to transport fatty acids to mitochondria for the process of β-oxidation and ATP generation. ⋯ Moreover, the combined treatment significantly improved the survival rate in comparison to the vehicle group. In contrast, administration of either drug alone did not show a significant improvement in most of the measurements. In conclusion, enhancing energy metabolism by combination of carnitine and AICAR provides a novel modality to treat renal I/R injury.
-
Comparative Study Clinical Trial
Serial changes in plasma total cortisol, plasma free cortisol, and tissue cortisol activity in patients with septic shock: an observational study.
Published data on adrenocortical function in septic shock have enrolled patients at various stages of critical illness and predominantly used plasma total cortisol, with minimal information on serial changes. Moreover, plasma free cortisol and tissue corticosteroid activity may not be strongly associated; however, few published data exist. The aim of this prospective observational study was to investigate serial changes in plasma total and free cortisol and tissue cortisol activity in septic shock. ⋯ In septic shock, there is a differential response of plasma total and free cortisol over time and in response to corticotropin. Changes in plasma and urinary F:E ratios suggest tissue modulation of 11-β hydroxysteroid dehydrogenase activity. Total plasma cortisol measurements may not reflect the global adrenal response in septic shock.
-
The relationship between end-tidal carbon dioxide (EtCO(2)) and arterial carbon dioxide (PaCO(2))-if better defined-could facilitate the difficult task of ventilation in prehospital trauma patients. We aimed to study the PaCO(2)-EtCO(2) relationship before, during, and after chest trauma, hemorrhage, and resuscitation in swine. Twenty-four swine were intubated, anesthetized, and monitored in an animal intensive care unit during three phases: phase 1 (day 1, healthy animals); phase 2 (day 2, injury), which consisted of blunt chest trauma, hemorrhage, and resuscitation; and phase 3 (day 2, after injury). "Respiratory maneuvers" (changes in respiratory rate and tidal volume [TV], intended to vary the PaCO(2) over a range of 25 to 85 mmHg, were performed during phases 1 and 3. ⋯ This work demonstrated that EtCO(2) alone can reliably be used to estimate PaCO(2) in uninjured subjects and in those subjects who have been resuscitated from severe injury. Immediately after blunt chest injury, the correlation between EtCO(2) and PaCO(2) is temporarily unstable. Under these circumstances (with abnormal oxygenation and/or hemodynamics), greater caution and other monitoring tools may be required.