Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Recombinant human soluble thrombomodulin (TM-α) was recently developed as an anticoagulant for patients with disseminated intravascular coagulation (DIC). However, the pharmacokinetics and pharmacodynamics of TM-α in DIC patients with severe renal impairment have not yet been elucidated. We investigated the pharmacokinetics and pharmacodynamics of TM-α in DIC patients with severe renal impairment. ⋯ In the pharmacokinetic simulation, however, the trough levels of TM-α increased gradually in the patients with renal impairment when the same dose of TM-α was repeatedly administered. After the administration of TM-α, the prothrombinase activities in the patients in both groups were sufficiently inhibited during the observation period. Although the pharmacokinetic values in DIC patients with severe renal impairment were only slightly different from those in DIC patients without severe renal impairment, we need to pay attention to the elevation of the trough levels of TM-α when the same dose of TM-α is repeatedly administered.
-
The management of severe traumatic brain injury (TBI) focuses on prevention and treatment of intracranial hypertension (ICH) and cerebral hypoperfusion (CH). Predicting which patients will develop these secondary insults is currently not possible. This study investigates the systemic manifestation of neuroinflammation and its role in helping to predict clinical deterioration following severe TBI. ⋯ Interleukin 8 and TNF-α demonstrate promise as candidate serum markers of impending ICH and CH. This suggests that we may be able to "predict" imminent events following TBI before clinical manifestations. Given the morbidity of ICH and CH, minimizing the effects of these secondary insults may have a significant impact on outcome and help guide decisions about timing of interventions.
-
Pulmonary contusion is a major cause of respiratory failure in trauma patients. This injury frequently leads to immune suppression and infectious complications such as pneumonia. The mechanism whereby trauma leads to an immune-suppressed state is poorly understood. ⋯ Toll-like receptor 4 expression on alveolar macrophages was significantly elevated in the injured group compared with sham but not in neutrophils. Animals subjected to PC are more resistant to mortality from infection with Pa and display an enhanced cytokine response when subsequently subjected to Pa. Increased expression of toll-like receptor 4 on alveolar macrophages and enhanced innate immunity are a possible mechanism of increased cytokine production and decreased susceptibility to pneumonia.
-
In clinical practice, prolonged occlusion of main arteries causes accumulation of metabolic waste and lactate. Reperfusion of blood flow is usually accompanied by circulatory shock. This study investigates the molecular mechanisms responsible for acidosis-induced hypotension and proposes therapeutic strategies for improving hemodynamic stability following ischemia-reperfusion acidosis. ⋯ Recording of electrocardiogram showed progressive development of bradyarrhythmia with ST-segment elevation in animals pretreated with PNU37883A before reperfusion. We demonstrate that acidosis-induced vasodilation is, in part, mediated by the activation of KATP channels through reduction of intracellular Ca in VSMCs. However, systemic antagonism of KATP channel significantly increases the overall mortality secondary to the development of cardiac dysrhythmia in animals with profound experimental metabolic acidosis, suggesting that activation of KATP channel is a protective response during reperfusion acidosis.
-
Early detection and management of shock are important in optimizing clinical outcomes. One regional marker, sublingual capnography (SLCO2), is particularly appealing as redistribution of blood flow away from the sublingual mucosa can happen very early in the compensatory phase of hypovolemic shock. Our objective was to test the hypothesis that SLCO2 would detect early hypovolemia in a human laboratory model of hemorrhage: progressive lower body negative pressure until onset of cardiovascular collapse. ⋯ Average time to presyncope was 1,579 ± 72 s (mean ± SE). At the time of cardiovascular collapse, lower body negative pressure altered (P < 0.001) systolic blood pressure (mean ± SE: 130 ± 3 vs. 98 ± 2 mm Hg), pulse pressure (mean ± SE: 58 ± 2 vs. 33 ± 2 mm Hg), and heart rate (mean ± SE: 63 ± 3 vs. 102 ± 6 beats/min) when compared with baseline, whereas SLCO2 did not change (49.1 ± 1.0 vs. 48.6 ± 1.5 mm Hg, P = 0.624). In a model of progressive central hypovolemia in humans, we did not detect metabolic derangements in the sublingual mucosa as measured by SLCO2.