Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Non-shockable rhythms represent an increasing proportion of reported cases of out-of-hospital cardiac arrest but with an associated poor prognosis. In the present study, we investigated the effects of hydrogen inhalation on cardiac and neurological function after cardiopulmonary resuscitation and compared the therapeutic benefit with hypothermia in an asphyxial rat model of cardiac arrest. ⋯ Small amounts of inhaled hydrogen were superior to mild hypothermia in improving cardiac function and neurological outcome in this asphyxial rat model of cardiac arrest.
-
Multicenter Study
Sympathoadrenal Activation is Associated with Acute Traumatic Coagulopathy and Endotheliopathy in Isolated Brain Injury.
Acute coagulopathy after traumatic brain injury (TBI) involves a complex multifactorial hemostatic response that is poorly characterized. ⋯ Biomarkers of coagulopathy and endotheliopathy are associated with poor outcome after TBI. Catecholamine levels were highly correlated with endotheliopathy and coagulopathy markers within the first 24 h after injury. Further research is warranted to characterize the pathogenic role of SNS-mediated hemostatic alterations in isolated TBI.
-
Management of non-compressible torso hemorrhage (NCTH) remains a challenge despite continued advancements in trauma resuscitation. Resuscitative thoracotomy with aortic cross-clamping and recent advances in endovascular aortic occlusion, including resuscitative endovascular occlusion of the aorta, have finite durations of therapy due to the inherent physiologic stressors that accompany complete occlusion. Here, we attempt to illuminate the current state of aortic occlusion for trauma resuscitation including explanation of the deleterious consequences of complete occlusion, potential methods and limitations of existing technology to overcome these consequences, and a description of innovative methods to improve the resuscitation of NCTH. By explaining the complexity and potential deleterious effects of resuscitation augmented with aortic occlusion, our goal is to provide practitioners with a real-world perspective on current endovascular technology and to encourage the continued innovation required to overcome existing obstacles.
-
Carbohydrate, lipid, and protein metabolism are largely controlled by the interplay of various hormones, which includes those secreted by the pancreatic islets of Langerhans. While typically representing only 1% to 2% of the total pancreatic mass, the islets have a remarkable ability to adapt to disparate situations demanding a change in hormone release, such as peripheral insulin resistance. ⋯ These adaptive responses within the islets are ultimately intended to maintain glycemic control and to promote macronutrient homeostasis during times of stress. Herein, we review the consequences of specific metabolic trauma that lead to insulin resistance and the corresponding adaptive alterations within the pancreatic islets.
-
Severe burns trigger a hyperdynamic state, necessitating accurate measurement of cardiac output (CO) for cardiovascular observation and guiding fluid resuscitation. However, it is unknown whether, in burned children, the increasingly popular transthoracic echocardiography (TTE) method of CO measurement is as accurate as the widely used transpulmonary thermodilution (TPTD) method. ⋯ TTE-derived estimates of CO may underestimate severity of the hyperdynamic state in severely burned children. We propose using the PiCCO system for objective cardiovascular monitoring and to guide goal-directed fluid resuscitation in this population.