Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Management of non-compressible torso hemorrhage (NCTH) remains a challenge despite continued advancements in trauma resuscitation. Resuscitative thoracotomy with aortic cross-clamping and recent advances in endovascular aortic occlusion, including resuscitative endovascular occlusion of the aorta, have finite durations of therapy due to the inherent physiologic stressors that accompany complete occlusion. Here, we attempt to illuminate the current state of aortic occlusion for trauma resuscitation including explanation of the deleterious consequences of complete occlusion, potential methods and limitations of existing technology to overcome these consequences, and a description of innovative methods to improve the resuscitation of NCTH. By explaining the complexity and potential deleterious effects of resuscitation augmented with aortic occlusion, our goal is to provide practitioners with a real-world perspective on current endovascular technology and to encourage the continued innovation required to overcome existing obstacles.
-
Severe burns trigger a hyperdynamic state, necessitating accurate measurement of cardiac output (CO) for cardiovascular observation and guiding fluid resuscitation. However, it is unknown whether, in burned children, the increasingly popular transthoracic echocardiography (TTE) method of CO measurement is as accurate as the widely used transpulmonary thermodilution (TPTD) method. ⋯ TTE-derived estimates of CO may underestimate severity of the hyperdynamic state in severely burned children. We propose using the PiCCO system for objective cardiovascular monitoring and to guide goal-directed fluid resuscitation in this population.
-
Although variability in vital parameters has been shown to predict outcomes, the role of change in shock index (delta SI) as a predictive tool remains unknown. ⋯ Delta SI from field to hospital independently predicts higher mortality. It predicts higher mortality even in apparently hemodynamically stable patients with normal traditional vital signs and normal SI. Delta SI may serve as an adjunct to existing traditional vital signs for the identification of occult hypovolemic shock and higher risk of death in trauma patients.
-
We previously reported that measurements of muscle oxygen saturation (SmO2) and the compensatory reserve index (CRI) provided earlier indication of reduced central blood volume than standard vital signs (e.g., blood pressure, heart rate, arterial oxygen saturation). In the present study, we hypothesized that the CRI would provide greater sensitivity and specificity to detect progressive decrease in central circulating blood volume compared with SmO2. Continuous noninvasive measures of CRI (calculated from feature changes in the photoplethysmographic arterial waveforms) were collected from 55 healthy volunteer subjects before and during stepwise lower body negative pressure (LBNP) to the onset of hemodynamic decompensation. ⋯ In comparison, SmO2, [H], and HbT had significantly lower ROC AUC, sensitivity and specificity values for detecting the same outcome. Consistent with our hypothesis, CRI detected central hypovolemia with significantly greater specificity than measures of tissue metabolism. Single measurement of CRI may enable more accurate triage, while CRI monitoring may allow for earlier detection of casualty deterioration.
-
Humans are able to compensate for significant blood loss with little change in traditional vital signs. We hypothesized that an algorithm, which recognizes compensatory changes in photoplethysmogram (PPG) waveforms, could detect active bleeding and ongoing volume loss in injured patients. ⋯ A novel computational algorithm that recognizes subtle changes in PPG waveforms can quickly and noninvasively discern which patients are actively bleeding and continuing to bleed with high sensitivity and specificity in acutely injured patients.