Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Despite being the leading cause of death in the United States for individuals 46 years and younger and the primary cause of death among military service members, trauma care research has been underfunded for the last 50 years. Sustained federal funding for a coordinated national trauma clinical research program is required to advance the science of caring for the injured. The Department of Defense is committed to funding studies with military relevance; therefore, it cannot fund pediatric or geriatric trauma clinical trials. ⋯ CNTR's member organizations are the American Association for the Surgery of Trauma (AAST), the American College of Surgeons Committee on Trauma (ACS COT), the Eastern Association for the Surgery of Trauma (EAST), the Western Trauma Association (WTA), and the National Trauma Institute (NTI). CNTR advocates for sustained federal funding for a multidisciplinary national trauma research program to be conducted through a large clinical trials network and a national trauma research repository. The initial advocacy and research activities underway to accomplish these goals are presented.
-
Severe burn results in systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction (MOD). Currently, large-animal models of burn-induced SIRS/MOD mostly use secondary insults resulting in a paucity of knowledge on the effect of burn alone on different organ systems. The objective of the current study was to develop and characterize a large animal model of burn-induced SIRS over the course of 2 weeks. ⋯ Intestinal structure as well as enterocyte homeostasis was also disrupted. All of these organ abnormalities recovered to varying degrees by 14 days post-burn. We report a unique reproducible large animal model of burn-induced SIRS that can be tailored to specific organ systems for investigation into potential immunomodulatory interventions that prevent organ failure or promote organ recovery after burn injury.
-
During storage, packed red blood cells (pRBCs) undergo a number of biochemical, metabolic, and morphologic changes, collectively known as the "storage lesion." We aimed to determine the effect of cryopreservation on the red blood cell storage lesion compared with traditional 4°C storage. ⋯ The red blood cell storage lesion is accelerated in previously cryopreserved pRBC after thawing. Biochemical deterioration of thawed and deglycerolized red cells suggests that storage time before transfusion should be limited to achieve similar risk profiles as never-frozen standard liquid storage pRBC units.
-
Neutrophilic inflammation is a mediator of morbidity and mortality in response to hemorrhagic shock. Although injury-induced neutrophil margination has long been observed, the nature of neutrophils' role in the "second hit" paradigm remains to be fully elucidated. We sought to extensively characterize neutrophil phenotype and functionality in response to severe hemorrhage in non-human primates (NHPs). ⋯ These results demonstrate an acute expansion and phenotypic activation of circulating neutrophils postinjury followed by a return to homeostatic proportions within 24 h; paradoxically, phenotypically "resting" neutrophils at 24 h have significantly higher oxidative potential, predisposing for exaggerated inflammatory responses. These data are consistent with clinical literature and provide important functional insight into neutrophil-mediated shock pathology.
-
One in 10 deaths worldwide is caused by traumatic injury, and 30% to 40% of those trauma-related deaths are due to hemorrhage. Currently, warming a bleeding victim is the standard of care due to the adverse effects of combined hemorrhage and hypothermia on survival. We tested the hypothesis that heating is detrimental to the maintenance of arterial pressure and cerebral perfusion during hemorrhage, while cooling is beneficial to victims who are otherwise normothermic. ⋯ Contrary to our hypothesis, WARM did not reduce cerebral blood velocity or LBNP tolerance relative to COOL and NEUT in normothermic individuals. While COOL increased blood pressure, cerebral perfusion and time to presyncope were not different relative to NEUT or WARM during sustained or continuous LBNP. Warming an otherwise normothermic hemorrhaging victim is not detrimental to hemodynamic stability, nor is this stability improved with cooling.