Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Patients with cardiogenic shock (CS) are at a high risk of developing infectious complications; however, their early detection is difficult, mainly due to a frequently occurring noninfectious inflammatory response, which accompanies an extensive myocardial infarction (MI) or a postcardiac arrest syndrome. The goal of our prospective study was to describe infectious complications in CS and the immune/inflammatory response based on a serial measurement of several blood-based inflammatory biomarkers. ⋯ The prevalence of infection in patients with CS was 46.3%, and respiratory tract infections were the most common type. Infections did not prolong statistically significantly the duration of mechanical ventilation and did not increase the prevalence of hospital mortality in this high-risk CS population. CS due to acute myocardial infarction was accompanied by a strong and highly variable inflammatory response, but it did not reach the intensity of the inflammatory response observed in patients with septic shock. An extensive immune/inflammatory response in patients with CS is linked to a poor prognosis.
-
Patients with sepsis commonly exhibit a hypercoagulability with high risk of venous thromboembolism (VTE). Neutrophil extracellular traps (NETs) are found to trigger inflammation and coagulation. We aim to determine whether NETs promoted the hypercoagulability and early anticoagulation reduced NETs releasing during sepsis. ⋯ The systemic inflammation during sepsis primes neutrophils to release NETs with increased risk of VTE. Early anticoagulation (6 h) reduces NETs releasing and may improve the coagulopathy of septic patients.
-
Pulmonary Fas activation is essential in the pathogenesis of the acute respiratory distress syndrome. It remains unclear whether Fas-induced lung injury is dependent on neutrophils or mainly triggered by epithelial cell apoptosis. The contribution of lung epithelial cells (LEC) and alveolar macrophages (AM) remains elusive. ⋯ Inhibition of p38MAPK significantly increased, while inhibition of ERK1/2 reduced AM and LEC apoptosis. In conclusion, neutrophils are a necessary component of Fas-induced lung damage, while not affecting lung apoptosis directly per se. LEC display higher resistance to Fas-triggered inflammation and apoptosis than AM.
-
Pulmonary injury can be characterized by an increased need for fraction of inspired oxygen or inspired oxygen percentage (FiO2) to maintain arterial blood saturation of oxygenation (SaO2). We tested a smart oxygenation system (SOS) that uses the activity of a closed-loop control FiO2 algorithm (CLC-FiO2) to rapidly assess acute respiratory distress syndrome (ARDS) severity so that rescue ventilation (RscVent) can be initiated earlier. ⋯ Initially, sheep were spontaneously ventilating and then randomized to standard of care (SOC) (n = 6), in which RscVent began when partial pressure of oxygen (PaO2) < 90 mmHg or FiO2 < 0.6, versus SOS (n = 7), software that incorporates and displays SpO2, CLC-FiO2, and SpO2/CLC-FiO2 ratio, at which RscVent was initiated when ratio threshold < 250. RscVent was achieved using a G5 Hamilton ventilator (Bonaduz, Switzerland) with adaptive pressure ventilation and adaptive support ventilation modes for SOC and SOS, respectively.
-
Burn wound healing complications, such as graft failure or infection, are a major source of morbidity and mortality in burn patients. The mechanisms by which local burn injury alters epidermal barrier function in autologous donor skin and surrounding burn margin are largely undefined. We hypothesized that defects in the epidermal cholinergic system may impair epidermal barrier function and innate immune responses. ⋯ As downstream proteins of inflammatory and cell death targets of nAChR activation, we found significant elevations in epidermal High Mobility Group Box Protein 1 and caspase 3 in donor and burn margin skin. Lastly, we employed a novel in vitro keratinocyte burn model to establish that burn injury influences the gene expression of these cholinergic mediators and their downstream targets. These results indicate that defects in cholinergic mediators and inflammatory/apoptotic molecules in donor and burn margin skin may directly contribute to graft failure or infection in burn patients.