Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Lung-recruited Ly6Chi monocytes had been shown to be involved in ventilator-induced lung injury (VILI). Our present study aimed to investigate whether the cyclooxygenase-2 (COX-2) inhibition modulates the function of lung-recruited Ly6Chi monocytes in a mouse model of VILI. ⋯ Parecoxib-induced alleviation of oxidative stress and inflammation in lung-recruited Ly6Chi monocytes may partly explain the beneficial action of COX-2 inhibition in VILI.
-
Alternation in traditional vital signs can only be observed during advanced stages of hypovolemia and shortly before the hemodynamic collapse. However, even minimal blood loss induces a decrease in the cardiac preload which translates to a decrease in stroke volume, but these indices are not readily monitored. We aimed to determine whether minor hemodynamic alternations induced by controlled and standardized hypovolemia can be detected by a whole-body bio-impedance technology. ⋯ Continuous noninvasive monitoring of SV may be superior to conventional indices (e.g., heart rate, blood pressure, or shock index) for early identification of acute blood loss. As an operator-independent and point-of-care technology, the SV whole body bio-impedance measurement may assist in accurate monitoring of potentially bleeding patients and early identification of hemorrhage.
-
Hypoxic pulmonary hypertension (HPH) is a devastating and incurable disease characterized by pulmonary vascular remodeling, resulting in right heart failure and even death. Accumulated evidence has confirmed long coding RNAs (lncRNAs) are involved in hypoxia-induced pulmonary vascular remodeling in HPH. The exact mechanism of lncRNA in hypoxic pulmonary hypertension remains unclear. ⋯ In conclusion, downregulation of lncRNA AC068039.4 inhibited pulmonary vascular remodeling through AC068039.4/miR-26a-5p/TRPC6 axis, providing new therapeutic insights for the treatment of HPH.