Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Observational Study
Blood Interleukin-6 Levels Predict Multiple Organ Dysfunction in Critically Ill Patients.
Predicting multiple organ dysfunction (MOD) in the late phase of critical illnesses is essential. Cytokines are considered biomarkers that can predict clinical outcomes; however, their predictive value for late-phase MOD is unknown. This study aimed to identify the biomarker with the highest predictive value for late-phase MOD. ⋯ Of the measured biomarkers, blood IL-6 levels had the highest predictive value for MOD on days 3 and 7. Blood IL-6 levels predict early- and late-phase MOD in critically ill patients.
-
It was reported that carbon monoxide-releasing molecule-3 (CORM-3) administration immediately after hemorrhagic shock and resuscitation (HSR) ameliorates the HSR-induced acute lung injury (ALI); however, the specific mechanism of the protective effects against HSR-induced ALI remains unclear. ⋯ We identified the protective effects of CORM-3 against HSR-induced ALI. The mechanism might be related to the inhibition of p38MAPK signaling pathway in lung macrophages.
-
Persistent Inflammation, Immune Suppression, and Catabolism Syndrome (PICS) is a disease state affecting patients who have a prolonged recovery after the acute phase of a large inflammatory insult. Trauma and sepsis are two pathologies after which such an insult evolves. In this review, we will focus on the key clinical determinants of PICS: Immunosuppression and cellular dysfunction. ⋯ In this review, we will discuss how regulatory T cells (Tregs), innate lymphoid cells, natural killer T cells (NKT cells), TCR-a CD4- CD8- double-negative T cells (DN T cells), and B cells can contribute to the development of post-traumatic and septic immunosuppression. Altogether, we seek to fill a gap in the understanding of the contribution of lymphocyte immunosuppression and dysfunction to the development of chronic immune disbalance. Further, we will provide an overview of promising diagnostic and therapeutic interventions, whose potential to overcome the detrimental immunosuppression after trauma and sepsis is currently being tested.
-
Acute traumatic coagulopathy is a complex phenomenon following injury and a main contributor to hemorrhage. It remains a leading cause of preventable death in trauma patients. This phenomenon is initiated by systemic injury to the vascular endothelium that is exacerbated by hypoperfusion, acidosis, and hypothermia and leads to systemic activation of the coagulation cascades and resultant coagulopathy. ⋯ Following localized brain injury, brain-derived extracellular vesicles are released into circulation where they induce a hypercoagulable state that rapidly turns into consumptive coagulopathy. VWF released from injured endothelial cells binds to these extracellular vesicles to enhance their activity in promoting coagulopathy and increasing endothelial permeability. However, there are numerous gaps in our knowledge of VWF following injury, providing a platform for further investigation.