Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Blocking ferroptosis reduces ischemia-reperfusion injury in some pathological contexts. However, there is no evidence that ferroptosis contributes to post-resuscitation myocardial dysfunction (PRMD). Here, we evaluated the therapeutic performance of ferroptosis inhibitors (UAMC-3203 or/and Deferoxamine) on the PRMD in a rat model of cardiac arrest and surveyed the changes of essential ferroptosis markers in the myocardium. ⋯ Consistently, we observe that the ferroptosis marker Glutathione peroxidase 4, 4-hydroxynonenal and non-heme iron altered (1 ± 0.060 vs. 0.021 ± 0.016, 1 ± 0.145 vs. 3.338 ± 0.221, 52.010 ± 3.587 ug/g vs. 70.500 ± 3.158 ug/g, all P < 0.05) in the myocardium after resuscitation. These changes were significantly suppressed by UAMC-3203 [(0.187 ± 0.043, 2.848 ± 0.169, all P < 0.05), (72.43 ± 4.920 ug/g, P > 0.05)], or Deferoxamine (0.203 ± 0.025, 2.683 ± 0.273, 55.95 ± 2.497 ug/g, all P < 0.05). Briefly, UAMC-3203 or/and Deferoxamine improve post-resuscitation myocardial dysfunction and provide evidence of ferroptosis involvement, suggesting that ferroptosis inhibitors could potentially provide an innovative therapeutic approach for mitigating the myocardial damage caused by cardiopulmonary resuscitation.
-
Acute normovolemic hemodilution (ANH) is associated with low oxygen carrying capacity of blood and purposed to cause renal injury in perioperative setting. It is best accomplished in a perioperative setting by a colloid such as hydroxyl ethyl starch (HES) due its capacity to fill the vascular compartment and maintain colloidal pressure. However, alterations of intra renal microvascular perfusion, flow and its effects on renal function and damage during ANH has not been sufficiently clarified. ⋯ Our results show that HES induced ANH is associated with a preserved intra renal blood volume, perfusion, and function in the clinical range of Hct (<15%). However, at severely low Hct (10%) ANH was associated with renal injury as indicated by increased NGAL levels. Changes in renal microcirculatory flow (CEUS and LSI) followed those seen in the sublingual microcirculation measured with HVM.
-
There are limited data on the temporal trends, incidence, and outcomes of ST-segment-elevation myocardial infarction-cardiogenic shock (STEMI-CS). ⋯ In the United States, incidence of CS in STEMI has increased 2.5-fold between 2000 and 2017, while in-hospital mortality has decreased during the study period. Use of coronary angiography and PCI increased during the study period.
-
Vagus nerve stimulation has been shown to exert anti-inflammation activities in sepsis. However, surgical implantation of stimulation devices is performed under general anesthesia, which limits its clinical application. Auricular vagus nerve stimulation (AVNS) is a minimal invasive technique that delivers electrical currents to the auricular branch of the vagus nerve. ⋯ Besides, AVNS decreased leukocyte and neutrophil accounts in BALF. Furthermore, colocalization of citrullination of histone H3 and myeloperoxidase expressions (highly specific marker of NETs) was reduced in AVNS mice. In conclusion, AVNS reduced systemic inflammation, attenuated lung edema, and inhibited neutrophil infiltration and NETs formation in the lung in LPS mice.
-
Recent studies have demonstrated that alterations in mitochondrial dynamics can impact innate immune function. However, the upstream mechanisms that link mitochondrial dynamics to innate immune phenotypes have not been completely elucidated. This study asks if Protein Kinase C, subunit delta (δPKC)-mediated phosphorylation of dynamin-related protein 1 (Drp1), a key driver of mitochondrial fission, impacts macrophage pro-inflammatory response following bacterial-derived lipopolysaccharide (LPS) stimulation. ⋯ These data suggest that inhibiting Drp1 phosphorylation by δPKC abates the excessive mitochondrial fragmentation and mitochondrial dysfunction that is seen following LPS treatment. Furthermore, these data suggest that limiting δPKC-dependent Drp1 activation decreases the pro-inflammatory response following LPS treatment. Altogether, δPKC-dependent Drp1 phosphorylation might be an upstream mechanistic link between alterations in mitochondrial dynamics and innate immune phenotypes, and may have therapeutic potential.