Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Background: The implication of circular RNAs (circRNAs) in sepsis-related complications arouses much attention, which provides additional treatment options for sepsis-related complications. The purpose of this study is to unveil the function and functional mechanism of circ_0001818 in cell models of septic acute kidney injury (AKI). Methods: Septic AKI cell models were constructed using HK2 cells treated with lipopolysaccharide (LPS). ⋯ Overexpression of TXNIP overturned the effects of circ_0001818 downregulation. Moreover, circ_0001818, miR-136-5p, and TXNIP in serumal exosomes had diagnostic values. Conclusions: Circ_0001818 targets miR-136-5p to activate TXNIP expression, leading to the contribution of LPS-induced HK2 cell injury.
-
Observational Study
Development of score system based on point-of-care ultrasound to predict vasopressor requirement for emergency patients with cardiopulmonary symptoms.
Objectives : Patients with cardiopulmonary symptoms admitted to the emergency department (ED) have high mortality and intensive care unit admission rates. We developed a new scoring system comprising concise triage information, point-of-care ultrasound, and lactate levels to predict vasopressor requirements. Methods : This retrospective observational study was conducted at a tertiary academic hospital. ⋯ The scoring system was developed based on the β coefficients of each component: accuracy, 0.8079; sensitivity, 0.8057; specificity, 0.8214; PPV, 0.9658; and NPV, 0.4035, with a cutoff value according to the Youden index. Conclusions : A new scoring system was developed to predict vasopressor requirements in adult ED patients with cardiopulmonary symptoms. This system can serve as a decision-support tool to guide efficient assignment of emergency medical resources.
-
Background : Nutritional management is crucial for severely ill patients. Measuring metabolism is believed to be necessary for the acute sepsis phase to accurately estimate nutrition. Indirect calorimetry (IDC) is assumed to be useful for acute intensive care; however, there are few studies on long-term IDC measurement in patients with systemic inflammation. ⋯ Muscle atrophy caused body weight loss, but fat tissue loss did not occur. Conclusions : We observed metabolic changes with IDC during the acute systemic inflammation phase owing to differences in calorie intake. This is the first report of long-term IDC measurement using the LPS-induced systemic inflammation rat model.
-
Background: Protein kinase ataxia telangiectasia mutated (ATM) regulates the function of endothelial cells and responds quickly to endotoxin. However, the function of ATM in lipopolysaccharide (LPS)-induced blood-brain barrier (BBB) disruption remains unknown. This study aimed to investigate the role and underlying mechanism of ATM in the regulation of the BBB function in sepsis. ⋯ By activating ATM, doxorubicin increased the protein binding between ATM and AKT and promoted the phosphorylated activation of AKT at S473, which could directly phosphorylate DRP1 at S637 to repress excessive mitochondrial fission. Consistently, the protective role of ATM was abolished by the AKT inhibitor MK-2206. Conclusions: Ataxia telangiectasia mutated protects against LPS-induced BBB disruption by regulating mitochondrial homeostasis, at least in part, through the AKT/DRP1 pathway.
-
During and immediately after cardiac arrest, cerebral oxygen delivery is impaired mainly by microthrombi and cerebral vasoconstriction. This may narrow capillaries so much that it might impede the flow of red blood cells and thus oxygen transport. The aim of this proof-of-concept study was to evaluate the effect of M101, an extracellular hemoglobin-based oxygen carrier (Hemarina SA, Morlaix, France) derived from Arenicola marina , applied during cardiac arrest in a rodent model, on markers of brain inflammation, brain damage, and regional cerebral oxygen saturation. ⋯ While M101 applied during cardiac arrest did not significantly change inflammation or brain oxygenation, the data suggest cerebral damage reduction due to hypoxic brain injury, measured by phospho-tau. Global burden of ischemia appeared reduced because acidosis was less severe. Whether postcardiac arrest infusion of M101 improves brain oxygenation is unknown and needs to be investigated.