Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Mucosal pH (pHi) is influenced by local perfusion and metabolism (mucosal-arterial pCO2 gradient, DeltapCO2), systemic metabolic acidosis (arterial bicarbonate), and respiration (arterial pCO2). We determined these components of pHi and their relation to outcome during the first 24 h of intensive care. We studied 103 patients with acute respiratory or circulatory failure (age, 63+/-2 [mean+/-SEM]; Acute Physiology and Chronic Health Evaluation II score, 20+/-1; Sequential Organ Failure Assessment score, 8+/-0). pHi, and the effects of bicarbonate and arterial and mucosal pCO2 on pHi, were assessed at admission, 6, and 24 h. pHi was reduced (at admission, 7.27+/-0.01) due to low arterial bicarbonate and increased DeltapCO2. ⋯ Arterial bicarbonate contributes more to pHi than the DeltapCO2 but is not associated with mortality. Hyperventilation partly masks mucosal acidosis. Inadequate tissue perfusion may persist despite stable hemodynamics and contributes to poor outcome.
-
Methicillin-resistant Staphylococcus aureus (MRSA)-related pneumonia and/or sepsis are a frequent serious menace. The aim of the study was to establish a standardized and reproducible model of MRSA-induced septic pneumonia to evaluate new therapies. Sheep were operatively prepared for chronic study. ⋯ The smoke inhalation alone had a little or no effect on these variables. This model closely mimics hyperdynamic human sepsis. The excessive production of NO may be extensively involved in the pathogenic process.
-
Gut epithelial cells are important in orchestrating immunoinflammatory responses in the gut and may impact systemic immunocompetent cells after shock and trauma. Ethanol (EtOH) intoxication is an important etiological factor in trauma and may increase the likelihood of posttraumatic septic complications. Both EtOH and gut I/R impair intestinal barrier function. ⋯ Lastly, the findings in apoptosis mirror the data of the TNF production in the apical compartment. Ethanol and H/R have a synergistic effect on cytokine production and barrier dysfunction in this model. They may also contribute to increased infectious complications and posttraumatic organ failure.
-
Mitochondrial dysfunction is thought to play a role in the pathogenesis of a variety of disease states, including sepsis. An acquired defect in oxidative phosphorylation potentially causes sepsis-induced organ dysfunction. Cytochrome oxidase (CcOX), the terminal oxidase of the respiratory chain, is competitively inhibited early in sepsis and progresses, becoming noncompetitive during the late phase. ⋯ However, cytochrome c injection abrogated this inhibition and restored CcOX kinetic activity to sham values at 48 h. Survival after CLP to 96 h after cytochrome c injection approached 50% compared with only 15% after saline injection. Thus, a single injection of exogenous cytochrome c 24 h post-CLP repletes mitochondrial substrate levels for up to 72 h, restores myocardial COX activity, and significantly improves survival.
-
It has been shown that the intrinsic mitochondrial apoptotic cascade is activated in vascular hyperpermeability after conditions such as hemorrhagic shock. Studies from our laboratory demonstrated mitochondrial reactive oxygen species (ROS) formation in endothelial cells during vascular hyperpermeability. We hypothesized that the participation of mitochondrial ROS in the intrinsic apoptotic cascade results in microvascular endothelial cell hyperpermeability. ⋯ Complex III inhibitors antimycin A (10 microM) and stigmatellin (10 microM) attenuated BAK (BH3)-mediated ROS formation and hyperpermeability (P<0.05). The complex III inhibition decreased BAK (BH3)-mediated cytochrome c release. The results suggest that mitochondrial ROS formation, particularly at respiratory chain complex III, is involved in BAK-induced monolayer hyperpermeability.