Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Sepsis is the systemic inflammatory response syndrome secondary to a local infection. Septic shock, the severe complication of sepsis associated with refractory hypotension, is frequently a near-fatal condition requiring prompt diagnosis and management. ⋯ In this review, we will briefly discuss the ongoing standard treatment of septic shock and describe novel potential therapies, aiming to improve hemodynamic support and/or control inflammatory response in sepsis. These therapies were associated with benefits in experimental studies and have been tested or are currently under testing in randomized controlled studies with septic patients.
-
In awake spontaneously breathing mice, inhaling gaseous hydrogen sulfide (H2S) produced a "suspended animation-like" metabolic status with hypothermia and reduced O2 demand, thus protecting from lethal hypoxia. Murine models may be questioned, however, because due to their large surface area/mass ratio, rodents can rapidly drop their core temperature. Therefore, we investigated whether intravenous H2S (Na2S, sodium sulfide) would induce a comparable metabolic response in anesthetized and mechanically ventilated pigs. ⋯ The parameters of inflammation and oxidative stress did not differ. Intravenous sulfide allowed reducing energy expenditure in an anesthetized large-animal model and improved the noradrenaline responsiveness during reperfusion after aortic occlusion. Investigations are warranted, hence, whether it may also protect other organs after I/R injury.
-
Granulocyte-macrophage-colony-stimulating factor (GM-CSF) plays a critical role in innate immunity by stimulating the differentiation of tissue macrophages via the transcription factor PU.1. Previous studies showed that GMCSF-deficient(GM-CSF-/-) mice had susceptibility to and impaired clearance of group B streptococcal bacteria by macrophages. For these studies, we hypothesized that GM-CSF-/- mice have increased susceptibility to peritonitis caused by immune dysfunction of peritoneal macrophages. ⋯ In vitro studies demonstrated reduced secretion of TNF-alpha and IL-6 by peritoneal macrophages isolated from sham GM-CSF-/- mice as compared with macrophages from sham control mice. Peritoneal instillation of GM-CSF-/-/PU.1+ macrophages, but not GM-CSF-/-/PU.1+ macrophages into GM-CSF-/- mice conferred susceptibility to death after CLP or peritoneal LPS exposure. These results demonstrate that GM-CSFY/PU.1-dependent peritoneal macrophage responses are a critical determinant of survival after experimentally induced peritonitis/sepsis or exposure to LPS and have implications for therapies to treat such infections.
-
Endotoxic shock is a systemic inflammatory response that is associated with an increase in nitric oxide production and a decrease in the formation of 20-hydroxyeicosatetraenoic acid (20-HETE), which may contribute to the fall in blood pressure and vascular reactivity. The present study examined the effects of a synthetic analogue of 20-HETE, N-[20-hydroxyeicosa-5(Z),14(Z)-dienoyl]glycine (5,14-HEDGE), on the fall in blood pressure and vascular responsiveness to vasoscontrictors and acetylcholine in rats treated with endotoxin. The MAP fell by 31 mmHg, and the heart rate rose by 90 beats/min in male Wistar rats treated with endotoxin (10 mg/kg, intraperitoneally). ⋯ The effects of endotoxin were prevented by 5,14-HEDGE (30 mg/kg, s.c.) given 1 h after injection of endotoxin. Furthermore, a competitive antagonist of vasoconstrictor effects of 20-HETE, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (30 mg/kg, s.c.), prevented the beneficial effects of 5,14-HEDGE on MAP and vascular tone in rats treated with endotoxin. These data are consistent with the view that a fall in the production of 20-HETE contributes to the fall in MAP and vascular reactivity in rats treated with endotoxin, and that 5,14-HEDGE has a beneficial effect.
-
Krüppel-like factor 4 (KLF4) is an evolutionarily conserved zinc finger-containing transcription factor with diverse regulatory functions in cell growth, proliferation, differentiation, and embryogenesis. In our previous study, we found that KLF4 mRNA was up-regulated more than 10-fold in adult mice lung tissues after endotoxin stimuli, and that KLF4 can regulate the expression of IL -10, an early inflammatory mediator. To determine whether KLF4 influences the expression and release of high-mobility group box 1 (HMGB1), an important late inflammatory mediator, which contains two potential KLF4-binding elements in its promoter, pcDNA3.1-KLF4 expression plasmid or KLF4 antisense oligonucleotide was transfected into RAW264.7 macrophages, the expression and release of HMGB1 were examined by reverse-transcriptase-polymerase chain reaction and Western blot, respectively. ⋯ Moreover, compared with the control group, the release of HMGB1 was increased after KLF4 overexpression after LPS treatment, whereas the release of HMGB1 was decreased after KLF4 deficiency in response to LPS. Electrophoretic mobility shift assay results showed the binding of KLF4 to the oligonucleotides designed according to the HMGB1 promoter, and the binding activity was increased in response to LPS stimulation. These results indicate that KLF4 plays an important role in regulating the expression of HMGB1 in normal condition, as well as the translocation and release of HMGB1 in response to LPS.