Shock : molecular, cellular, and systemic pathobiological aspects and therapeutic approaches : the official journal the Shock Society, the European Shock Society, the Brazilian Shock Society, the International Federation of Shock Societies
-
Thermal injuries greater than 20% body surface area (BSA) result in systemic shock with generalized edema in addition to local tissue destruction. Burn shock is induced by a variety of mediators, mainly immunomodulative cytokines. This experimental study evaluates if burn shock can be induced in healthy rats by transfer of burn plasma (BP) with mediators. ⋯ The burned tissue is no longer required for burn shock induction, and the pathophysiologic process seems to be self-perpetuating as early as 4 h posttrauma. Leukocytes are activated by thermal injury and BP infusion. The role of leukocyte-endothelium interactions for edema formation remains uncertain and requires further investigation.
-
Prostacyclin prevents pulmonary vascular injury and shock by inhibiting increases in lung tissue levels of TNF in rats administered endotoxin. We previously reported that NO derived from eNOS increases endothelial production of prostacyclin. Because neutrophil elastase has been shown to decrease endothelial production of prostacyclin by inhibiting NOS activity, we examined whether neutrophil elastase inhibitors reduce pulmonary vascular injury and hypotension by inhibiting the decrease in pulmonary endothelial production of prostacyclin in rats administered endotoxin. ⋯ These inhibitors also reduced hypotension and inhibited increases in lung tissue levels of mRNA of the inducible form of NOS in animals administered endotoxin. The effects of neutrophil elastase inhibitors were completely reversed by pretreatment with nitro-L-arginine methyl ester, an inhibitor of NOS, or indomethacin, a nonspecific cyclooxygenase inhibitor. These observations suggested that neutrophil elastase might decrease the pulmonary endothelial production of prostacyclin by inhibiting endothelial NO production, thereby contributing to the development of pulmonary vascular injury and shock through increases in lung tissue levels of TNF in rats administered endotoxin.
-
Krüppel-like factor 4 (KLF4) is an evolutionarily conserved zinc finger-containing transcription factor with diverse regulatory functions in cell growth, proliferation, differentiation, and embryogenesis. In our previous study, we found that KLF4 mRNA was up-regulated more than 10-fold in adult mice lung tissues after endotoxin stimuli, and that KLF4 can regulate the expression of IL -10, an early inflammatory mediator. To determine whether KLF4 influences the expression and release of high-mobility group box 1 (HMGB1), an important late inflammatory mediator, which contains two potential KLF4-binding elements in its promoter, pcDNA3.1-KLF4 expression plasmid or KLF4 antisense oligonucleotide was transfected into RAW264.7 macrophages, the expression and release of HMGB1 were examined by reverse-transcriptase-polymerase chain reaction and Western blot, respectively. ⋯ Moreover, compared with the control group, the release of HMGB1 was increased after KLF4 overexpression after LPS treatment, whereas the release of HMGB1 was decreased after KLF4 deficiency in response to LPS. Electrophoretic mobility shift assay results showed the binding of KLF4 to the oligonucleotides designed according to the HMGB1 promoter, and the binding activity was increased in response to LPS stimulation. These results indicate that KLF4 plays an important role in regulating the expression of HMGB1 in normal condition, as well as the translocation and release of HMGB1 in response to LPS.
-
Nitric oxide (NO) plays a pivotal role both in triggering and mediating delayed protection against myocardial I/R injury during anesthetic-induced preconditioning (APC). However, the signaling mechanisms that underlie this phenomenon remain unclear. Using isoflurane as a representative anesthetic, the present study tested the hypothesis that NO released after anesthetic-induced preconditioning initiates delayed cardioprotection via activation of nuclear transcription factor-kappaB (NF-kappaB), leading to myocardial adaptation by upregulation of iNOS and increase in production of NO. ⋯ Isoflurane exposure also evoked a robust increase in myocardial NO content, followed by nucleus-bound translocation of p65 or p50 subunit of NF-kappaB and increase in NF-kappaB DNA-binding activity in heart tissues. These molecular events after isoflurane exposure were blocked by pretreatment with N-nitro-L-arginine methyl ester. We conclude that NO generated immediately after isoflurane exposure triggers downstream activation of NF-kappaB, resulting in subsequent upregulation of iNOS expression and NO synthesis that mediate APC-induced delayed cardioprotection.